[PDF] Geometrical Foundations Of Continuum Mechanics - eBooks Review

Geometrical Foundations Of Continuum Mechanics


Geometrical Foundations Of Continuum Mechanics
DOWNLOAD

Download Geometrical Foundations Of Continuum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometrical Foundations Of Continuum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Geometrical Foundations Of Continuum Mechanics


Geometrical Foundations Of Continuum Mechanics
DOWNLOAD
Author : Paul Steinmann
language : en
Publisher: Springer
Release Date : 2015-03-25

Geometrical Foundations Of Continuum Mechanics written by Paul Steinmann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-25 with Science categories.


This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear continuum mechanics. Together with the discussion on the integrability conditions for the distortions and double-distortions, the concepts of dislocation, disclination and point-defect density tensors are introduced. For concreteness, after touching on nonlinear fir st- and second-order elasticity, a detailed discussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity is given. The discussion naturally culminates in a comprehensive set of different types of dislocation, disclination and point-defect density tensors. It is argued, that these can potentially be used to model densities of geometrically necessary defects and the accompanying hardening in crystalline materials. Eventually Part IV summarizes the above findings on integrability whereby distinction is made between the straightforward conditions for the distortion and the double-distortion being integrable and the more involved conditions for the strain (metric) and the double-strain (connection) being integrable. The book addresses readers with an interest in continuum modelling of solids from engineering and the sciences alike, whereby a sound knowledge of tensor calculus and continuum mechanics is required as a prerequisite.



Geometric Foundations Of Continuum Mechanics


Geometric Foundations Of Continuum Mechanics
DOWNLOAD
Author : John Arthur Simmons
language : en
Publisher:
Release Date : 1961

Geometric Foundations Of Continuum Mechanics written by John Arthur Simmons and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1961 with Deformations (Mechanics) categories.




Geometric Continuum Mechanics


Geometric Continuum Mechanics
DOWNLOAD
Author : Reuven Segev
language : en
Publisher: Springer Nature
Release Date : 2020-05-13

Geometric Continuum Mechanics written by Reuven Segev and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-13 with Mathematics categories.


This contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include: Global stress and hyper-stress theories Applications of de Rham currents to singular dislocations Manifolds of mappings for continuum mechanics Kinematics of defects in solid crystals Geometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.



Foundations Of Geometric Continuum Mechanics


Foundations Of Geometric Continuum Mechanics
DOWNLOAD
Author : Reuven Segev
language : en
Publisher: Springer Nature
Release Date : 2023-10-31

Foundations Of Geometric Continuum Mechanics written by Reuven Segev and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-31 with Mathematics categories.


This monograph presents the geometric foundations of continuum mechanics. An emphasis is placed on increasing the generality and elegance of the theory by scrutinizing the relationship between the physical aspects and the mathematical notions used in its formulation. The theory of uniform fluxes in affine spaces is covered first, followed by the smooth theory on differentiable manifolds, and ends with the non-smooth global theory. Because continuum mechanics provides the theoretical foundations for disciplines like fluid dynamics and stress analysis, the author’s extension of the theory will enable researchers to better describe the mechanics of modern materials and biological tissues. The global approach to continuum mechanics also enables the formulation and solutions of practical optimization problems. Foundations of Geometric Continuum Mechanics will be an invaluable resource for researchers in the area, particularly mathematicians, physicists, and engineers interested in the foundational notions of continuum mechanics.



The Geometrical Language Of Continuum Mechanics


The Geometrical Language Of Continuum Mechanics
DOWNLOAD
Author : Marcelo Epstein
language : en
Publisher: Cambridge University Press
Release Date : 2010-07-26

The Geometrical Language Of Continuum Mechanics written by Marcelo Epstein and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-26 with Science categories.


Epstein presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. Divided into three parts of roughly equal length, the book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialisation of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitively meaningful engineering applications.



Geometric Continuum Mechanics And Induced Beam Theories


Geometric Continuum Mechanics And Induced Beam Theories
DOWNLOAD
Author : Simon R. Eugster
language : en
Publisher: Springer
Release Date : 2015-03-19

Geometric Continuum Mechanics And Induced Beam Theories written by Simon R. Eugster and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-19 with Science categories.


This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.



Fundamentals Of Continuum Mechanics


Fundamentals Of Continuum Mechanics
DOWNLOAD
Author : John W. Rudnicki
language : en
Publisher: John Wiley & Sons
Release Date : 2014-11-10

Fundamentals Of Continuum Mechanics written by John W. Rudnicki and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-10 with Science categories.


A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering



Continuum Mechanics


Continuum Mechanics
DOWNLOAD
Author : C. S. Jog
language : en
Publisher: Cambridge University Press
Release Date : 2015-06-25

Continuum Mechanics written by C. S. Jog and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-25 with Science categories.


Moving on to derivation of the governing equations, this book presents applications in the areas of linear and nonlinear elasticity.



Material Geometry Groupoids In Continuum Mechanics


Material Geometry Groupoids In Continuum Mechanics
DOWNLOAD
Author : Manuel De Leon
language : en
Publisher: World Scientific
Release Date : 2021-04-23

Material Geometry Groupoids In Continuum Mechanics written by Manuel De Leon and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-23 with Mathematics categories.


This monograph is the first in which the theory of groupoids and algebroids is applied to the study of the properties of uniformity and homogeneity of continuous media. It is a further step in the application of differential geometry to the mechanics of continua, initiated years ago with the introduction of the theory of G-structures, in which the group G denotes the group of material symmetries, to study smoothly uniform materials.The new approach presented in this book goes much further by being much more general. It is not a generalization per se, but rather a natural way of considering the algebraic-geometric structure induced by the so-called material isomorphisms. This approach has allowed us to encompass non-uniform materials and discover new properties of uniformity and homogeneity that certain material bodies can possess, thus opening a new area in the discipline.