[PDF] Geometry And Statistics - eBooks Review

Geometry And Statistics


Geometry And Statistics
DOWNLOAD

Download Geometry And Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry And Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Differential Geometry And Statistics


Differential Geometry And Statistics
DOWNLOAD
Author : M.K. Murray
language : en
Publisher: Routledge
Release Date : 2017-10-19

Differential Geometry And Statistics written by M.K. Murray and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-19 with Mathematics categories.


Several years ago our statistical friends and relations introduced us to the work of Amari and Barndorff-Nielsen on applications of differential geometry to statistics. This book has arisen because we believe that there is a deep relationship between statistics and differential geometry and moreoever that this relationship uses parts of differential geometry, particularly its 'higher-order' aspects not readily accessible to a statistical audience from the existing literature. It is, in part, a long reply to the frequent requests we have had for references on differential geometry! While we have not gone beyond the path-breaking work of Amari and Barndorff- Nielsen in the realm of applications, our book gives some new explanations of their ideas from a first principles point of view as far as geometry is concerned. In particular it seeks to explain why geometry should enter into parametric statistics, and how the theory of asymptotic expansions involves a form of higher-order differential geometry. The first chapter of the book explores exponential families as flat geometries. Indeed the whole notion of using log-likelihoods amounts to exploiting a particular form of flat space known as an affine geometry, in which straight lines and planes make sense, but lengths and angles are absent. We use these geometric ideas to introduce the notion of the second fundamental form of a family whose vanishing characterises precisely the exponential families.



The Geometry Of Multivariate Statistics


The Geometry Of Multivariate Statistics
DOWNLOAD
Author : Thomas D. Wickens
language : en
Publisher: Psychology Press
Release Date : 2014-02-25

The Geometry Of Multivariate Statistics written by Thomas D. Wickens and has been published by Psychology Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-25 with Psychology categories.


A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.



Geometry Driven Statistics


Geometry Driven Statistics
DOWNLOAD
Author : Ian L. Dryden
language : en
Publisher: John Wiley & Sons
Release Date : 2015-07-22

Geometry Driven Statistics written by Ian L. Dryden and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-22 with Mathematics categories.


A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia's long and influential career in statistics. A common theme unifying much of Mardia’s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high-profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.



Geometry And Statistics


Geometry And Statistics
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2022-07-15

Geometry And Statistics written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-15 with Mathematics categories.


Geometry and Statistics, Volume 46 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Geometry and Statistics



Geometric Modeling In Probability And Statistics


Geometric Modeling In Probability And Statistics
DOWNLOAD
Author : Ovidiu Calin
language : en
Publisher: Springer
Release Date : 2017-04-30

Geometric Modeling In Probability And Statistics written by Ovidiu Calin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-30 with Mathematics categories.


This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.



Algebraic Geometry And Statistical Learning Theory


Algebraic Geometry And Statistical Learning Theory
DOWNLOAD
Author : Sumio Watanabe
language : en
Publisher: Cambridge University Press
Release Date : 2009-08-13

Algebraic Geometry And Statistical Learning Theory written by Sumio Watanabe and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-08-13 with Computers categories.


Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties.



Information Geometry


Information Geometry
DOWNLOAD
Author : Nihat Ay
language : en
Publisher: Springer
Release Date : 2017-08-25

Information Geometry written by Nihat Ay and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-25 with Mathematics categories.


The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.



Geometric Structures Of Statistical Physics Information Geometry And Learning


Geometric Structures Of Statistical Physics Information Geometry And Learning
DOWNLOAD
Author : Frédéric Barbaresco
language : en
Publisher: Springer Nature
Release Date : 2021-06-27

Geometric Structures Of Statistical Physics Information Geometry And Learning written by Frédéric Barbaresco and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-27 with Mathematics categories.


Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.



Riemannian Geometric Statistics In Medical Image Analysis


Riemannian Geometric Statistics In Medical Image Analysis
DOWNLOAD
Author : Xavier Pennec
language : en
Publisher: Academic Press
Release Date : 2019-09-02

Riemannian Geometric Statistics In Medical Image Analysis written by Xavier Pennec and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-02 with Computers categories.


Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications



Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics


Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics
DOWNLOAD
Author : Marco Pettini
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-14

Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics written by Marco Pettini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-14 with Mathematics categories.


Itisaspecialpleasureformetowritethisforewordforaremarkablebookbya remarkableauthor.MarcoPettiniisadeepthinker,whohasspentmanyyears probing the foundations of Hamiltonian chaos and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. Itisinparticularthequalityofmindoftheauthorandhisdeepphysical,as well as mathematical insights which make this book so special and inspiring. It is a “must” for those who want to venture into a new approach to old problems or want to use new tools for new problems. Although topology has penetrated a number of ?elds of physics, a broad participationoftopologyintheclari?cationandprogressoffundamentalpr- lems in the above-mentioned ?elds has been lacking. The new perspectives topology gives to the above-mentioned problems are bound to help in their clari?cation and to spread to other ?elds of science. The sparsity of geometric thinking and of its use to solve fundamental problems, when compared with purely analytical methods in physics, could be relieved and made highly productive using the material discussed in this book. It is unavoidable that the physicist reader may have then to learn some new mathematics and be challenged to a new way of thinking, but with the author as a guide, he is assured of the best help in achieving this that is presently available.