Geometry From Dynamics Classical And Quantum

DOWNLOAD
Download Geometry From Dynamics Classical And Quantum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry From Dynamics Classical And Quantum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometry From Dynamics Classical And Quantum
DOWNLOAD
Author : José F. Cariñena
language : en
Publisher: Springer
Release Date : 2014-09-23
Geometry From Dynamics Classical And Quantum written by José F. Cariñena and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-23 with Science categories.
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.
Classical And Quantum Physics
DOWNLOAD
Author : G. Marmo
language : en
Publisher: Springer Nature
Release Date : 2019-10-26
Classical And Quantum Physics written by G. Marmo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-26 with Science categories.
This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.
Geometric Phases In Classical And Quantum Mechanics
DOWNLOAD
Author : Dariusz Chruscinski
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Phases In Classical And Quantum Mechanics written by Dariusz Chruscinski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Classical And Quantum Dynamics Of Constrained Hamiltonian Systems
DOWNLOAD
Author : Heinz J. Rothe
language : en
Publisher: World Scientific
Release Date : 2010
Classical And Quantum Dynamics Of Constrained Hamiltonian Systems written by Heinz J. Rothe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Science categories.
This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.
Geometry Of Quantum States
DOWNLOAD
Author : Ingemar Bengtsson
language : en
Publisher: Cambridge University Press
Release Date : 2017-08-18
Geometry Of Quantum States written by Ingemar Bengtsson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Mathematics categories.
This new edition describes the space of quantum states and the theory of quantum entanglement from a geometric perspective.
Applications Of Contact Geometry And Topology In Physics
DOWNLOAD
Author : Arkady Leonidovich Kholodenko
language : en
Publisher: World Scientific
Release Date : 2013
Applications Of Contact Geometry And Topology In Physics written by Arkady Leonidovich Kholodenko and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.
Geometric Quantization And Quantum Mechanics
DOWNLOAD
Author : Jedrzej Sniatycki
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Quantization And Quantum Mechanics written by Jedrzej Sniatycki and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.
Classical Systems In Quantum Mechanics
DOWNLOAD
Author : Pavel Bóna
language : en
Publisher: Springer Nature
Release Date : 2020-06-23
Classical Systems In Quantum Mechanics written by Pavel Bóna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-23 with Science categories.
This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems – i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of “quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".
Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics
DOWNLOAD
Author : Marco Pettini
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-14
Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics written by Marco Pettini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-14 with Mathematics categories.
Itisaspecialpleasureformetowritethisforewordforaremarkablebookbya remarkableauthor.MarcoPettiniisadeepthinker,whohasspentmanyyears probing the foundations of Hamiltonian chaos and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. Itisinparticularthequalityofmindoftheauthorandhisdeepphysical,as well as mathematical insights which make this book so special and inspiring. It is a “must” for those who want to venture into a new approach to old problems or want to use new tools for new problems. Although topology has penetrated a number of ?elds of physics, a broad participationoftopologyintheclari?cationandprogressoffundamentalpr- lems in the above-mentioned ?elds has been lacking. The new perspectives topology gives to the above-mentioned problems are bound to help in their clari?cation and to spread to other ?elds of science. The sparsity of geometric thinking and of its use to solve fundamental problems, when compared with purely analytical methods in physics, could be relieved and made highly productive using the material discussed in this book. It is unavoidable that the physicist reader may have then to learn some new mathematics and be challenged to a new way of thinking, but with the author as a guide, he is assured of the best help in achieving this that is presently available.
From Classical To Quantum Mechanics
DOWNLOAD
Author : Giampiero Esposito
language : en
Publisher: Cambridge University Press
Release Date : 2004-03-11
From Classical To Quantum Mechanics written by Giampiero Esposito and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-11 with Science categories.
This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.