[PDF] Geometry Of Differential Forms - eBooks Review

Geometry Of Differential Forms


Geometry Of Differential Forms
DOWNLOAD

Download Geometry Of Differential Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry Of Differential Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Geometry Of Differential Forms


Geometry Of Differential Forms
DOWNLOAD
Author : Shigeyuki Morita
language : en
Publisher: American Mathematical Soc.
Release Date : 2001

Geometry Of Differential Forms written by Shigeyuki Morita and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


This work introduces the theory and practice of differential forms on manifolds and overviews the concept of differentiable manifolds, assuming a minimum of knowledge in linear algebra, calculus, and elementary topology. Chapters cover manifolds, differential forms, the de Rham theorem, Laplacian and harmonic forms, and vector and fiber bundles and characteristic classes. The text includes exercises and answers. First published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1997, 1998. c. Book News Inc.



Differential Forms And Applications


Differential Forms And Applications
DOWNLOAD
Author : Manfredo P. Do Carmo
language : en
Publisher: Springer Science & Business Media
Release Date : 1998-05-20

Differential Forms And Applications written by Manfredo P. Do Carmo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-05-20 with Mathematics categories.


An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.



Visual Differential Geometry And Forms


Visual Differential Geometry And Forms
DOWNLOAD
Author : Tristan Needham
language : en
Publisher: Princeton University Press
Release Date : 2021-07-13

Visual Differential Geometry And Forms written by Tristan Needham and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-13 with Mathematics categories.


An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.



A Geometric Approach To Differential Forms


A Geometric Approach To Differential Forms
DOWNLOAD
Author : David Bachman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-02

A Geometric Approach To Differential Forms written by David Bachman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-02 with Mathematics categories.


This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.



Differential Forms And Connections


Differential Forms And Connections
DOWNLOAD
Author : R. W. R. Darling
language : en
Publisher: Cambridge University Press
Release Date : 1994-09-22

Differential Forms And Connections written by R. W. R. Darling and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-09-22 with Mathematics categories.


Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.



A Visual Introduction To Differential Forms And Calculus On Manifolds


A Visual Introduction To Differential Forms And Calculus On Manifolds
DOWNLOAD
Author : Jon Pierre Fortney
language : en
Publisher: Springer
Release Date : 2018-11-03

A Visual Introduction To Differential Forms And Calculus On Manifolds written by Jon Pierre Fortney and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-03 with Mathematics categories.


This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.



Differential Geometry And Mathematical Physics


Differential Geometry And Mathematical Physics
DOWNLOAD
Author : Gerd Rudolph
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-09

Differential Geometry And Mathematical Physics written by Gerd Rudolph and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-09 with Science categories.


Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.



Fundamentals Of Differential Geometry


Fundamentals Of Differential Geometry
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Fundamentals Of Differential Geometry written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.



Inequalities For Differential Forms


Inequalities For Differential Forms
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer
Release Date : 2014-09-05

Inequalities For Differential Forms written by Ravi P. Agarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-05 with Mathematics categories.


This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms, in particular the ones that satisfy the A-harmonic equations. The presentation focuses on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are discussed next. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous presentation requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.