Geometry Of Foliations

DOWNLOAD
Download Geometry Of Foliations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometry Of Foliations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometry Of Foliations
DOWNLOAD
Author : Philippe Tondeur
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-05
Geometry Of Foliations written by Philippe Tondeur and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-05 with Gardening categories.
Surveys research over the past few years at a level accessible to graduate students and researchers with a background in differential and Riemannian geometry. Among the topics are foliations of codimension one, holonomy, Lie foliations, basic forms, mean curvature, the Hodge theory for the transversal Laplacian, applications of the heat equation method to Riemannian foliations, the spectral theory, Connes' perspective of foliations as examples of non- commutative spaces, and infinite-dimensional examples. The bibliographic appendices list books and surveys on particular aspects of foliations, proceedings of conferences and symposia, all papers on the subject up to 1995, and the numbers of papers published on the subject during the years 1990-95. Annotation copyrighted by Book News, Inc., Portland, OR
Extrinsic Geometry Of Foliations
DOWNLOAD
Author : Vladimir Rovenski
language : en
Publisher: Springer Nature
Release Date : 2021-05-22
Extrinsic Geometry Of Foliations written by Vladimir Rovenski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-22 with Mathematics categories.
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
Geometry Of Foliations
DOWNLOAD
Author : Philippe Tondeur
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Geometry Of Foliations written by Philippe Tondeur and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.
Geometric Theory Of Foliations
DOWNLOAD
Author : César Camacho
language : en
Publisher: Birkhäuser
Release Date : 1984-01-01
Geometric Theory Of Foliations written by César Camacho and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984-01-01 with Mathematics categories.
Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X • 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".
Birational Geometry Of Foliations
DOWNLOAD
Author : Marco Brunella
language : en
Publisher: Springer
Release Date : 2015-03-25
Birational Geometry Of Foliations written by Marco Brunella and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-25 with Mathematics categories.
The text presents the birational classification of holomorphic foliations of surfaces. It discusses at length the theory developed by L.G. Mendes, M. McQuillan and the author to study foliations of surfaces in the spirit of the classification of complex algebraic surfaces.
Foliations And The Geometry Of 3 Manifolds
DOWNLOAD
Author : Danny Calegari
language : en
Publisher: Clarendon Press
Release Date : 2007-05-17
Foliations And The Geometry Of 3 Manifolds written by Danny Calegari and has been published by Clarendon Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-17 with Mathematics categories.
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in 1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Introduction To Foliations And Lie Groupoids
DOWNLOAD
Author : I. Moerdijk
language : en
Publisher: Cambridge University Press
Release Date : 2003-09-18
Introduction To Foliations And Lie Groupoids written by I. Moerdijk and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-18 with Mathematics categories.
This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.
Dynamics Of Foliations Groups And Pseudogroups
DOWNLOAD
Author : Pawel Walczak
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Dynamics Of Foliations Groups And Pseudogroups written by Pawel Walczak and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Foliations, groups and pseudogroups are objects which are closely related via the notion of holonomy. In the 1980s they became considered as general dynamical systems. This book deals with their dynamics. Since "dynamics” is a very extensive term, we focus on some of its aspects only. Roughly speaking, we concentrate on notions and results related to different ways of measuring complexity of the systems under consideration. More precisely, we deal with different types of growth, entropies and dimensions of limiting objects. Invented in the 1980s (by E. Ghys, R. Langevin and the author) geometric entropy of a foliation is the principal object of interest among all of them. Throughout the book, the reader will find a good number of inspirating problems related to the topics covered.
Riemannian Foliations
DOWNLOAD
Author : Molino
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Riemannian Foliations written by Molino and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.
Metric Foliations And Curvature
DOWNLOAD
Author : Detlef Gromoll
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-28
Metric Foliations And Curvature written by Detlef Gromoll and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-28 with Mathematics categories.
Riemannian manifolds, particularly those with positive or nonnegative curvature, are constructed from only a handful by means of metric fibrations or deformations thereof. This text documents some of these constructions, many of which have only appeared in journal form. The emphasis is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.