Getting Started With Amazon Sagemaker Studio

DOWNLOAD
Download Getting Started With Amazon Sagemaker Studio PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Getting Started With Amazon Sagemaker Studio book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Getting Started With Amazon Sagemaker Studio
DOWNLOAD
Author : Michael Hsieh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-03-31
Getting Started With Amazon Sagemaker Studio written by Michael Hsieh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-31 with Computers categories.
Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code Key FeaturesUnderstand the ML lifecycle in the cloud and its development on Amazon SageMaker StudioLearn to apply SageMaker features in SageMaker Studio for ML use casesScale and operationalize the ML lifecycle effectively using SageMaker StudioBook Description Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases. What you will learnExplore the ML development life cycle in the cloudUnderstand SageMaker Studio features and the user interfaceBuild a dataset with clicks and host a feature store for MLTrain ML models with ease and scaleCreate ML models and solutions with little codeHost ML models in the cloud with optimal cloud resourcesEnsure optimal model performance with model monitoringApply governance and operational excellence to ML projectsWho this book is for This book is for data scientists and machine learning engineers who are looking to become well-versed with Amazon SageMaker Studio and gain hands-on machine learning experience to handle every step in the ML lifecycle, including building data as well as training and hosting models. Although basic knowledge of machine learning and data science is necessary, no previous knowledge of SageMaker Studio and cloud experience is required.
Getting Started With Amazon Sagemaker Studio
DOWNLOAD
Author : Michael Hsieh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-03-31
Getting Started With Amazon Sagemaker Studio written by Michael Hsieh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-31 with Computers categories.
Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code Key FeaturesUnderstand the ML lifecycle in the cloud and its development on Amazon SageMaker StudioLearn to apply SageMaker features in SageMaker Studio for ML use casesScale and operationalize the ML lifecycle effectively using SageMaker StudioBook Description Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases. What you will learnExplore the ML development life cycle in the cloudUnderstand SageMaker Studio features and the user interfaceBuild a dataset with clicks and host a feature store for MLTrain ML models with ease and scaleCreate ML models and solutions with little codeHost ML models in the cloud with optimal cloud resourcesEnsure optimal model performance with model monitoringApply governance and operational excellence to ML projectsWho this book is for This book is for data scientists and machine learning engineers who are looking to become well-versed with Amazon SageMaker Studio and gain hands-on machine learning experience to handle every step in the ML lifecycle, including building data as well as training and hosting models. Although basic knowledge of machine learning and data science is necessary, no previous knowledge of SageMaker Studio and cloud experience is required.
Geospatial Data Analytics On Aws
DOWNLOAD
Author : Scott Bateman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-06-30
Geospatial Data Analytics On Aws written by Scott Bateman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Computers categories.
Build an end-to-end geospatial data lake in AWS using popular AWS services such as RDS, Redshift, DynamoDB, and Athena to manage geodata Purchase of the print or Kindle book includes a free PDF eBook. Key Features Explore the architecture and different use cases to build and manage geospatial data lakes in AWS Discover how to leverage AWS purpose-built databases to store and analyze geospatial data Learn how to recognize which anti-patterns to avoid when managing geospatial data in the cloud Book DescriptionManaging geospatial data and building location-based applications in the cloud can be a daunting task. This comprehensive guide helps you overcome this challenge by presenting the concept of working with geospatial data in the cloud in an easy-to-understand way, along with teaching you how to design and build data lake architecture in AWS for geospatial data. You’ll begin by exploring the use of AWS databases like Redshift and Aurora PostgreSQL for storing and analyzing geospatial data. Next, you’ll leverage services such as DynamoDB and Athena, which offer powerful built-in geospatial functions for indexing and querying geospatial data. The book is filled with practical examples to illustrate the benefits of managing geospatial data in the cloud. As you advance, you’ll discover how to analyze and visualize data using Python and R, and utilize QuickSight to share derived insights. The concluding chapters explore the integration of commonly used platforms like Open Data on AWS, OpenStreetMap, and ArcGIS with AWS to enable you to optimize efficiency and provide a supportive community for continuous learning. By the end of this book, you’ll have the necessary tools and expertise to build and manage your own geospatial data lake on AWS, along with the knowledge needed to tackle geospatial data management challenges and make the most of AWS services.What you will learn Discover how to optimize the cloud to store your geospatial data Explore management strategies for your data repository using AWS Single Sign-On and IAM Create effective SQL queries against your geospatial data using Athena Validate postal addresses using Amazon Location services Process structured and unstructured geospatial data efficiently using R Use Amazon SageMaker to enable machine learning features in your application Explore the free and subscription satellite imagery data available for use in your GIS Who this book is forIf you understand the importance of accurate coordinates, but not necessarily the cloud, then this book is for you. This book is best suited for GIS developers, GIS analysts, data analysts, and data scientists looking to enhance their solutions with geospatial data for cloud-centric applications. A basic understanding of geographic concepts is suggested, but no experience with the cloud is necessary for understanding the concepts in this book.
No Code Ai Concepts And Applications In Machine Learning Visualization And Cloud Platforms
DOWNLOAD
Author : Minsoo Kang
language : en
Publisher: World Scientific
Release Date : 2024-07-19
No Code Ai Concepts And Applications In Machine Learning Visualization And Cloud Platforms written by Minsoo Kang and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-19 with Computers categories.
This book is a beginner-friendly guide to artificial intelligence (AI), ideal for those with no technical background. It introduces AI, machine learning, and deep learning basics, focusing on no-code methods for easy understanding. The book also covers data science, data mining, and big data processing, maintaining a no-code approach throughout. Practical applications are explored using no-code platforms like Microsoft Azure Machine Learning and AWS SageMaker. Readers are guided through step-by-step instructions and real-data examples to apply learning algorithms without coding. Additionally, it includes the integration of business intelligence tools like Power BI and AWS QuickSight into machine learning projects.This guide bridges the gap between AI theory and practice, making it a valuable resource for beginners in the field.
Learn Amazon Sagemaker
DOWNLOAD
Author : Julien Simon
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-11-26
Learn Amazon Sagemaker written by Julien Simon and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-26 with Computers categories.
Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store Key FeaturesBuild, train, and deploy machine learning models quickly using Amazon SageMakerOptimize the accuracy, cost, and fairness of your modelsCreate and automate end-to-end machine learning workflows on Amazon Web Services (AWS)Book Description Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation. What you will learnBecome well-versed with data annotation and preparation techniquesUse AutoML features to build and train machine learning models with AutoPilotCreate models using built-in algorithms and frameworks and your own codeTrain computer vision and natural language processing (NLP) models using real-world examplesCover training techniques for scaling, model optimization, model debugging, and cost optimizationAutomate deployment tasks in a variety of configurations using SDK and several automation toolsWho this book is for This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
Generative Ai With Sap And Amazon Bedrock
DOWNLOAD
Author : Miguel Figueiredo
language : en
Publisher: Springer Nature
Release Date : 2025-02-19
Generative Ai With Sap And Amazon Bedrock written by Miguel Figueiredo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-19 with Mathematics categories.
Explore Generative AI and understand its key concepts, architecture, and tangible business use cases. This book will help you develop the skills needed to use SAP AI Core service features available in the SAP Business Technology Platform. You’ll examine large language model (LLM) concepts and gain the practical knowledge to unleash the best use of Gen AI. As you progress, you’ll learn how to get started with your own LLM models and work with Generative AI use cases. Additionally, you’ll see how to take advantage Amazon Bedrock stack using AWS SDK for ABAP. To fully leverage your knowledge, Generative AI with SAP and Amazon Bedrock offers practical step-by-step instructions for how to establish a cloud SAP BTP account model and create your first GenAIartifacts. This work is an important prerequisite for those who want to take full advantage of generative AI with SAP. What You Will Learn Master the concepts and terminology of artificial intelligence and GenAI Understand opportunities and impacts for different industries with GenAI Become familiar with SAP AI Core, Amazon Bedrock, AWS SDK for ABAP and develop your firsts GenAI projects Accelerate your development skills Gain more productivity and time implementing GenAI use cases Who this Book Is For Anyone who wants to learn about Generative AI for Enterprise and SAP practitioners who want to take advantage of AI within the SAP ecosystem to support their systems and workflows.
Accelerate Deep Learning Workloads With Amazon Sagemaker
DOWNLOAD
Author : Vadim Dabravolski
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-10-28
Accelerate Deep Learning Workloads With Amazon Sagemaker written by Vadim Dabravolski and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-28 with Computers categories.
Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance. Key FeaturesExplore key Amazon SageMaker capabilities in the context of deep learningTrain and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloadsCover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMakerBook Description Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads. By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker. What you will learnCover key capabilities of Amazon SageMaker relevant to deep learning workloadsOrganize SageMaker development environmentPrepare and manage datasets for deep learning trainingDesign, debug, and implement the efficient training of deep learning modelsDeploy, monitor, and optimize the serving of DL modelsWho this book is for This book is relevant for ML engineers who work on deep learning model development and training, and for Solutions Architects who design and optimize end-to-end deep learning workloads. It assumes familiarity with the Python ecosystem, principles of Machine Learning and Deep Learning, and basic knowledge of the AWS cloud.
Automated Machine Learning
DOWNLOAD
Author : Adnan Masood
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-18
Automated Machine Learning written by Adnan Masood and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18 with Computers categories.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Machine Learning With Amazon Sagemaker Cookbook
DOWNLOAD
Author : Joshua Arvin Lat
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-10-29
Machine Learning With Amazon Sagemaker Cookbook written by Joshua Arvin Lat and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-29 with Computers categories.
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems. What you will learnTrain and deploy NLP, time series forecasting, and computer vision models to solve different business problemsPush the limits of customization in SageMaker using custom container imagesUse AutoML capabilities with SageMaker Autopilot to create high-quality modelsWork with effective data analysis and preparation techniquesExplore solutions for debugging and managing ML experiments and deploymentsDeal with bias detection and ML explainability requirements using SageMaker ClarifyAutomate intermediate and complex deployments and workflows using a variety of solutionsWho this book is for This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
Cloud Native Ai And Machine Learning On Aws
DOWNLOAD
Author : Premkumar Rangarajan
language : en
Publisher: BPB Publications
Release Date : 2023-02-14
Cloud Native Ai And Machine Learning On Aws written by Premkumar Rangarajan and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-14 with Computers categories.
Bring elasticity and innovation to Machine Learning and AI operations KEY FEATURES ● Coverage includes a wide range of AWS AI and ML services to help you speedily get fully operational with ML. ● Packed with real-world examples, practical guides, and expert data science methods for improving AI/ML education on AWS. ● Includes ready-made, purpose-built models as AI services and proven methods to adopt MLOps techniques. DESCRIPTION Using machine learning and artificial intelligence (AI) in existing business processes has been successful. Even AWS's ML and AI services make it simple and economical to conduct machine learning experiments. This book will show readers how to use the complete set of AI and ML services available on AWS to streamline the management of their whole AI operation and speed up their innovation. In this book, you'll learn how to build data lakes, build and train machine learning models, automate MLOps, ensure maximum data reusability and reproducibility, and much more. The applications presented in the book show how to make the most of several different AWS offerings, including Amazon Comprehend, Amazon Rekognition, Amazon Lookout, and AutoML. This book teaches you to manage massive data lakes, train artificial intelligence models, release these applications into production, and track their progress in real-time. You will learn how to use the pre-trained models for various tasks, including picture recognition, automated data extraction, image/video detection, and anomaly detection. Every step of your Machine Learning and AI project's development process is optimised throughout the book by utilising Amazon's pre-made, purpose-built AI services. WHAT YOU WILL LEARN ● Learn how to build, deploy, and manage large-scale AI and ML applications on AWS. ● Get your hands dirty with AWS AI services like SageMaker, Comprehend, Rekognition, Lookout, and AutoML. ● Master data transformation, feature engineering, and model training with Amazon SageMaker modules. ● Use neural networks, distributed learning, and deep learning algorithms to improve ML models. ● Use AutoML, SageMaker Canvas, and Autopilot for Model Deployment and Evaluation. ● Acquire expertise with Amazon SageMaker Studio, Jupyter Server, and ML frameworks such as TensorFlow and MXNet. WHO THIS BOOK IS FOR Data Engineers, Data Scientists, AWS and Cloud Professionals who are comfortable with machine learning and the fundamentals of Python will find this book powerful. Familiarity with AWS would be helpful but is not required. TABLE OF CONTENTS 1. Introducing the ML Workflow 2. Hydrating the Data Lake 3. Predicting the Future With Features 4. Orchestrating the Data Continuum 5. Casting a Deeper Net (Algorithms and Neural Networks) 6. Iteration Makes Intelligence (Model Training and Tuning) 7. Let George Take Over (AutoML in Action) 8. Blue or Green (Model Deployment Strategies) 9. Wisdom at Scale with Elastic Inference 10. Adding Intelligence with Sensory Cognition 11. AI for Industrial Automation 12. Operationalized Model Assembly (MLOps and Best Practices)