[PDF] Getting Started With Data Science - eBooks Review

Getting Started With Data Science


Getting Started With Data Science
DOWNLOAD

Download Getting Started With Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Getting Started With Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Getting Started With Data Science


Getting Started With Data Science
DOWNLOAD
Author : Murtaza Haider
language : en
Publisher:
Release Date : 2016

Getting Started With Data Science written by Murtaza Haider and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Business enterprises categories.




Getting Started With Data Science


Getting Started With Data Science
DOWNLOAD
Author : Murtaza Haider
language : en
Publisher: IBM Press
Release Date : 2015-12-14

Getting Started With Data Science written by Murtaza Haider and has been published by IBM Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-14 with Business & Economics categories.


Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.



Getting Started In Data Science


Getting Started In Data Science
DOWNLOAD
Author : Ayodele Odubela
language : en
Publisher: fullyConnected Inc.
Release Date : 2020-12-01

Getting Started In Data Science written by Ayodele Odubela and has been published by fullyConnected Inc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-01 with Technology & Engineering categories.


Data Science is one of the "sexiest jobs of the 21st Century", but few resources are geared towards learners with no prior experience. Getting Started in Data Science simplifies the core of the concepts of Data Science and Machine Learning. This book includes perspectives of a Data Science from someone with a non-traditional route to a Data Science career. Getting Started in Data Science creatively weaves in ethical questions and asks readers to question the harm models can cause as they learn new concepts. Unlike many other books for beginners, this book covers bias and accountability in detail as well as career insight that informs readers of what expectations are in industry Data Science.



Getting Started With Streamlit For Data Science


Getting Started With Streamlit For Data Science
DOWNLOAD
Author : Tyler Richards
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-08-20

Getting Started With Streamlit For Data Science written by Tyler Richards and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-20 with Computers categories.


Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key Features Learn how to showcase machine learning models in a Streamlit application effectively and efficiently Become an expert Streamlit creator by getting hands-on with complex application creation Discover how Streamlit enables you to create and deploy apps effortlessly Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn Set up your first development environment and create a basic Streamlit app from scratch Explore methods for uploading, downloading, and manipulating data in Streamlit apps Create dynamic visualizations in Streamlit using built-in and imported Python libraries Discover strategies for creating and deploying machine learning models in Streamlit Use Streamlit sharing for one-click deployment Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar Implement best practices for prototyping your data science work with Streamlit Who this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.



Data Science In Education Using R


Data Science In Education Using R
DOWNLOAD
Author : Ryan A. Estrellado
language : en
Publisher: Routledge
Release Date : 2020-10-26

Data Science In Education Using R written by Ryan A. Estrellado and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-26 with Education categories.


Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.



Data Science For Dummies


Data Science For Dummies
DOWNLOAD
Author : Lillian Pierson
language : en
Publisher: John Wiley & Sons
Release Date : 2017-03-06

Data Science For Dummies written by Lillian Pierson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-06 with Computers categories.


Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.



Getting Started With Python Data Analysis


Getting Started With Python Data Analysis
DOWNLOAD
Author : Phuong Vo.T.H
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-11-04

Getting Started With Python Data Analysis written by Phuong Vo.T.H and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-04 with Computers categories.


Learn to use powerful Python libraries for effective data processing and analysis About This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using Python Who This Book Is For If you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python library In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approach This is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.



Getting Started With Kudu


Getting Started With Kudu
DOWNLOAD
Author : Jean-Marc Spaggiari
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-07-09

Getting Started With Kudu written by Jean-Marc Spaggiari and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-09 with Computers categories.


Fast data ingestion, serving, and analytics in the Hadoop ecosystem have forced developers and architects to choose solutions using the least common denominator—either fast analytics at the cost of slow data ingestion or fast data ingestion at the cost of slow analytics. There is an answer to this problem. With the Apache Kudu column-oriented data store, you can easily perform fast analytics on fast data. This practical guide shows you how. Begun as an internal project at Cloudera, Kudu is an open source solution compatible with many data processing frameworks in the Hadoop environment. In this book, current and former solutions professionals from Cloudera provide use cases, examples, best practices, and sample code to help you get up to speed with Kudu. Explore Kudu’s high-level design, including how it spreads data across servers Fully administer a Kudu cluster, enable security, and add or remove nodes Learn Kudu’s client-side APIs, including how to integrate Apache Impala, Spark, and other frameworks for data manipulation Examine Kudu’s schema design, including basic concepts and primitives necessary to make your project successful Explore case studies for using Kudu for real-time IoT analytics, predictive modeling, and in combination with another storage engine



Getting Started With Duckdb


Getting Started With Duckdb
DOWNLOAD
Author : Simon Aubury
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-24

Getting Started With Duckdb written by Simon Aubury and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-24 with Computers categories.


Analyze and transform data efficiently with DuckDB, a versatile, modern, in-process SQL database Key Features Use DuckDB to rapidly load, transform, and query data across a range of sources and formats Gain practical experience using SQL, Python, and R to effectively analyze data Learn how open source tools and cloud services in the broader data ecosystem complement DuckDB’s versatile capabilities Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDuckDB is a fast in-process analytical database. Getting Started with DuckDB offers a practical overview of its usage. You'll learn to load, transform, and query various data formats, including CSV, JSON, and Parquet. The book covers DuckDB's optimizations, SQL enhancements, and extensions for specialized applications. Working with examples in SQL, Python, and R, you'll explore analyzing public datasets and discover tools enhancing DuckDB workflows. This guide suits both experienced and new data practitioners, quickly equipping you to apply DuckDB's capabilities in analytical projects. You'll gain proficiency in using DuckDB for diverse tasks, enabling effective integration into your data workflows.What you will learn Understand the properties and applications of a columnar in-process database Use SQL to load, transform, and query a range of data formats Discover DuckDB's rich extensions and learn how to apply them Use nested data types to model semi-structured data and extract and model JSON data Integrate DuckDB into your Python and R analytical workflows Effectively leverage DuckDB's convenient SQL enhancements Explore the wider ecosystem and pathways for building DuckDB-powered data applications Who this book is for If you’re interested in expanding your analytical toolkit, this book is for you. It will be particularly valuable for data analysts wanting to rapidly explore and query complex data, data and software engineers looking for a lean and versatile data processing tool, along with data scientists needing a scalable data manipulation library that integrates seamlessly with Python and R. You will get the most from this book if you have some familiarity with SQL and foundational database concepts, as well as exposure to a programming language such as Python or R.



Hands On Exploratory Data Analysis With Python


Hands On Exploratory Data Analysis With Python
DOWNLOAD
Author : Suresh Kumar Mukhiya
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-03-27

Hands On Exploratory Data Analysis With Python written by Suresh Kumar Mukhiya and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with Computers categories.


Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.