[PDF] Global Analysis Of Minimal Surfaces - eBooks Review

Global Analysis Of Minimal Surfaces


Global Analysis Of Minimal Surfaces
DOWNLOAD

Download Global Analysis Of Minimal Surfaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Global Analysis Of Minimal Surfaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Global Analysis Of Minimal Surfaces


Global Analysis Of Minimal Surfaces
DOWNLOAD
Author : Ulrich Dierkes
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-16

Global Analysis Of Minimal Surfaces written by Ulrich Dierkes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-16 with Mathematics categories.


Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.



Minimal Surfaces Global Analysis Of Minimal Surfaces


Minimal Surfaces Global Analysis Of Minimal Surfaces
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2010

Minimal Surfaces Global Analysis Of Minimal Surfaces written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Boundary value problems categories.




Lectures On Minimal Surfaces Introduction Fundamentals Geometry And Basic Boundary Value Problems


Lectures On Minimal Surfaces Introduction Fundamentals Geometry And Basic Boundary Value Problems
DOWNLOAD
Author : Johannes C. C. Nitsche
language : en
Publisher:
Release Date : 1989

Lectures On Minimal Surfaces Introduction Fundamentals Geometry And Basic Boundary Value Problems written by Johannes C. C. Nitsche and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Mathematics categories.


This book is a revised and translated version of the first five chapters of Vorlesungen ^D"uber Minimalfl^D"achen. It deals with the parametric minimal surface in Euclidean space. The author presents a broad survey that extends from the classical beginnings to the current situation while highlighting many of the subject's main features and interspersing the mathematical development with pertinent historical remarks.



Global Differential Geometry And Global Analysis


Global Differential Geometry And Global Analysis
DOWNLOAD
Author : D. Ferus
language : en
Publisher: Springer
Release Date : 2006-11-15

Global Differential Geometry And Global Analysis written by D. Ferus and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-15 with Mathematics categories.




Minimal Surfaces


Minimal Surfaces
DOWNLOAD
Author : Ulrich Dierkes
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-16

Minimal Surfaces written by Ulrich Dierkes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-16 with Mathematics categories.


Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem andTomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.



Global Analysis Studies And Applications I


Global Analysis Studies And Applications I
DOWNLOAD
Author : Y.G. Borisovich
language : en
Publisher: Springer
Release Date : 2006-12-08

Global Analysis Studies And Applications I written by Y.G. Borisovich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-08 with Mathematics categories.


This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A. Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B. Yu. Sternin, V.E. Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu. B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm maps of non-negativeindex and its applications to global bifurcation of solutions.- A.A. Bolibruch: Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem.- I.V. Bronstein, A. Ya. Kopanskii: Finitely smooth normal forms of vector fields in the vicinity of a rest point.- B.D. Gel'man: Generalized degree of multi-valued mappings.- G.N. Khimshiashvili: On Fredholmian aspects of linear transmission problems.- A.S. Mishchenko: Stationary solutions of nonlinear stochastic equations.- B. Yu. Sternin, V.E. Shatalov: Continuation of solutions to elliptic equations and localisation of singularities.- V.G. Zvyagin, V.T. Dmitrienko: Properness of nonlinear elliptic differential operators in H



Minimal Surfaces


Minimal Surfaces
DOWNLOAD
Author : A. T. Fomenko
language : en
Publisher: American Mathematical Soc.
Release Date : 1993

Minimal Surfaces written by A. T. Fomenko and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Minimal surfaces categories.


This book contains recent results from a group focusing on minimal surfaces in the Moscow State University seminar on modern geometrical methods, headed by A. V. Bolsinov, A. T. Fomenko, and V. V. Trofimov. The papers collected here fall into three areas: one-dimensional minimal graphs on Riemannian surfaces and the Steiner problem, two-dimensional minimal surfaces and surfaces of constant mean curvature in three-dimensional Euclidean space, and multidimensional globally minimal and harmonic surfaces in Riemannian manifolds. The volume opens with an exposition of several important problems in the modern theory of minimal surfaces that will be of interest to newcomers to the field. Prepared with attention to clarity and accessibility, these papers will appeal to mathematicians, physicists, and other researchers interested in the application of geometrical methods to specific problems.



Elements Of The Geometry And Topology Of Minimal Surfaces In Three Dimensional Space


Elements Of The Geometry And Topology Of Minimal Surfaces In Three Dimensional Space
DOWNLOAD
Author : A. T. Fomenko
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Elements Of The Geometry And Topology Of Minimal Surfaces In Three Dimensional Space written by A. T. Fomenko and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This book grew out of lectures presented to students of mathematics, physics, and mechanics by A. T. Fomenko at Moscow University, under the auspices of the Moscow Mathematical Society. The book describes modern and visual aspects of the theory of minimal, two-dimensional surfaces in three-dimensional space. The main topics covered are: topological properties of minimal surfaces, stable and unstable minimal films, classical examples, the Morse-Smale index of minimal two-surfaces in Euclidean space, and minimal films in Lobachevskian space. Requiring only a standard first-year calculus and elementary notions of geometry, this book brings the reader rapidly into this fascinating branch of modern geometry.



A Course In Minimal Surfaces


A Course In Minimal Surfaces
DOWNLOAD
Author : Tobias Holck Colding
language : en
Publisher: American Mathematical Society
Release Date : 2024-01-18

A Course In Minimal Surfaces written by Tobias Holck Colding and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-18 with Mathematics categories.


Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.



A Survey On Classical Minimal Surface Theory


A Survey On Classical Minimal Surface Theory
DOWNLOAD
Author : William Meeks
language : en
Publisher: American Mathematical Soc.
Release Date : 2012

A Survey On Classical Minimal Surface Theory written by William Meeks and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


Meeks and Pérez extend their 2011 survey article "The classical theory of Minimal surfaces" in the Bulletin of the American Mathematical Society to include other recent research results. Their topics include minimal surfaces with finite topology and more than one end, limits of embedded minimal surfaces without local area or curvature bounds, conformal structure of minimal surfaces, embedded minimal surfaces of finite genus, topological aspects of minimal surfaces, and Calabi-Yau problems. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).