[PDF] Global Attractors Of Non Autonomous Dissipative Dynamical Systems - eBooks Review

Global Attractors Of Non Autonomous Dissipative Dynamical Systems


Global Attractors Of Non Autonomous Dissipative Dynamical Systems
DOWNLOAD

Download Global Attractors Of Non Autonomous Dissipative Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Global Attractors Of Non Autonomous Dissipative Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Global Attractors Of Non Autonomous Dissipative Dynamical Systems


Global Attractors Of Non Autonomous Dissipative Dynamical Systems
DOWNLOAD
Author : David N. Cheban
language : en
Publisher: World Scientific
Release Date : 2004

Global Attractors Of Non Autonomous Dissipative Dynamical Systems written by David N. Cheban and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.



Global Attractors Of Nonautonomous Dissipative Dynamical Systems


Global Attractors Of Nonautonomous Dissipative Dynamical Systems
DOWNLOAD
Author : David N Cheban
language : en
Publisher: World Scientific
Release Date : 2004-11-29

Global Attractors Of Nonautonomous Dissipative Dynamical Systems written by David N Cheban and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-11-29 with Mathematics categories.


The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations. Intended for experts in qualitative theory of differential equations, dynamical systems and their applications, this accessible book can also serve as an important resource for senior students and lecturers.



Global Attractors Of Non Autonomous Dissipative Dynamical Systems


Global Attractors Of Non Autonomous Dissipative Dynamical Systems
DOWNLOAD
Author : David N. Cheban
language : en
Publisher: World Scientific
Release Date : 2004

Global Attractors Of Non Autonomous Dissipative Dynamical Systems written by David N. Cheban and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


- The book is intended to the experts in qualitative theory of differential equations, dynamical systems and their applications



Global Attractors Of Non Autonomous Dynamical And Control Systems 2nd Edition


Global Attractors Of Non Autonomous Dynamical And Control Systems 2nd Edition
DOWNLOAD
Author : David N Cheban
language : en
Publisher: World Scientific
Release Date : 2014-12-15

Global Attractors Of Non Autonomous Dynamical And Control Systems 2nd Edition written by David N Cheban and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-15 with Mathematics categories.


The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems — the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions — published in the works of author in recent years.



Nonautonomous Dynamics


Nonautonomous Dynamics
DOWNLOAD
Author : David N. Cheban
language : en
Publisher: Springer Nature
Release Date : 2020-01-22

Nonautonomous Dynamics written by David N. Cheban and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-22 with Mathematics categories.


This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).



Monotone Nonautonomous Dynamical Systems


Monotone Nonautonomous Dynamical Systems
DOWNLOAD
Author : David N. Cheban
language : en
Publisher: Springer Nature
Release Date : 2024-07-15

Monotone Nonautonomous Dynamical Systems written by David N. Cheban and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-15 with Mathematics categories.


The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations; 2. Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein’s conjecture, 1975); 3. Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; 4. The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; 5. Asymptotic behavior of monotone nonautonomous dynamical systems with a first integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations.



Attractors For Infinite Dimensional Non Autonomous Dynamical Systems


Attractors For Infinite Dimensional Non Autonomous Dynamical Systems
DOWNLOAD
Author : Alexandre Carvalho
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-25

Attractors For Infinite Dimensional Non Autonomous Dynamical Systems written by Alexandre Carvalho and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-25 with Mathematics categories.


The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.



Nonautonomous Dynamical Systems


Nonautonomous Dynamical Systems
DOWNLOAD
Author : Peter E. Kloeden
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-08-17

Nonautonomous Dynamical Systems written by Peter E. Kloeden and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-17 with Mathematics categories.


The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.



An Introduction To Nonautonomous Dynamical Systems And Their Attractors


An Introduction To Nonautonomous Dynamical Systems And Their Attractors
DOWNLOAD
Author : Peter Kloeden
language : en
Publisher: World Scientific
Release Date : 2020-11-25

An Introduction To Nonautonomous Dynamical Systems And Their Attractors written by Peter Kloeden and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Mathematics categories.


The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.



Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities


Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities
DOWNLOAD
Author : Marat Akhmet
language : en
Publisher: Springer
Release Date : 2017-01-23

Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities written by Marat Akhmet and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-23 with Mathematics categories.


This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.