Graphical Models For Machine Learning And Digital Communication

DOWNLOAD
Download Graphical Models For Machine Learning And Digital Communication PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphical Models For Machine Learning And Digital Communication book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Graphical Models For Machine Learning And Digital Communication
DOWNLOAD
Author : Brendan J. Frey
language : en
Publisher: MIT Press
Release Date : 1998
Graphical Models For Machine Learning And Digital Communication written by Brendan J. Frey and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.
Content Description. #Includes bibliographical references and index.
Graphical Models For Machine Learning And Digital Communication
DOWNLOAD
Author : Brendan J. Frey
language : it
Publisher:
Release Date : 1998
Graphical Models For Machine Learning And Digital Communication written by Brendan J. Frey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with categories.
Probabilistic Graphical Models
DOWNLOAD
Author : Daphne Koller
language : en
Publisher: MIT Press
Release Date : 2009-07-31
Probabilistic Graphical Models written by Daphne Koller and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-31 with Computers categories.
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Mathematical Foundations Of Speech And Language Processing
DOWNLOAD
Author : Mark Johnson
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-03-18
Mathematical Foundations Of Speech And Language Processing written by Mark Johnson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-18 with Technology & Engineering categories.
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Next Generation Wireless Networks Meet Advanced Machine Learning Applications
DOWNLOAD
Author : Comşa, Ioan-Sorin
language : en
Publisher: IGI Global
Release Date : 2019-01-25
Next Generation Wireless Networks Meet Advanced Machine Learning Applications written by Comşa, Ioan-Sorin and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-25 with Technology & Engineering categories.
The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.
Advances In Neural Information Processing Systems 12
DOWNLOAD
Author : Sara A. Solla
language : en
Publisher: MIT Press
Release Date : 2000
Advances In Neural Information Processing Systems 12 written by Sara A. Solla and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Computers categories.
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Probabilistic Models Of The Brain
DOWNLOAD
Author : Rajesh P.N. Rao
language : en
Publisher: MIT Press
Release Date : 2002-03-29
Probabilistic Models Of The Brain written by Rajesh P.N. Rao and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-03-29 with Medical categories.
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Introduction To Statistical Relational Learning
DOWNLOAD
Author : Lise Getoor
language : en
Publisher: MIT Press
Release Date : 2019-09-22
Introduction To Statistical Relational Learning written by Lise Getoor and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-22 with Computers categories.
Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Semi Supervised Learning
DOWNLOAD
Author : Olivier Chapelle
language : en
Publisher: MIT Press
Release Date : 2010-01-22
Semi Supervised Learning written by Olivier Chapelle and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-22 with Computers categories.
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Introduction To Machine Learning
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press
Release Date : 2004
Introduction To Machine Learning written by Ethem Alpaydin and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.
An introductory text in machine learning that gives a unified treatment of methods based on statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.