[PDF] Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 - eBooks Review

Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158


Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158
DOWNLOAD

Download Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158


Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158
DOWNLOAD
Author : Jean Bourgain
language : en
Publisher: Princeton University Press
Release Date : 2005

Green S Function Estimates For Lattice Schrodinger Operators And Applications Am 158 written by Jean Bourgain and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."



Green S Function Estimates For Lattice Schr Dinger Operators And Applications


Green S Function Estimates For Lattice Schr Dinger Operators And Applications
DOWNLOAD
Author : Jean Bourgain
language : en
Publisher: Princeton University Press
Release Date : 2004-11-01

Green S Function Estimates For Lattice Schr Dinger Operators And Applications written by Jean Bourgain and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-11-01 with Mathematics categories.


This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."



Analysis At Large


Analysis At Large
DOWNLOAD
Author : Artur Avila
language : en
Publisher: Springer Nature
Release Date : 2022-11-01

Analysis At Large written by Artur Avila and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-01 with Mathematics categories.


​Analysis at Large is dedicated to Jean Bourgain whose research has deeply influenced the mathematics discipline, particularly in analysis and its interconnections with other fields. In this volume, the contributions made by renowned experts present both research and surveys on a wide spectrum of subjects, each of which pay tribute to a true mathematical pioneer. Examples of topics discussed in this book include Bourgain’s discretized sum-product theorem, his work in nonlinear dispersive equations, the slicing problem by Bourgain, harmonious sets, the joint spectral radius, equidistribution of affine random walks, Cartan covers and doubling Bernstein type inequalities, a weighted Prékopa-Leindler inequality and sumsets with quasicubes, the fractal uncertainty principle for the Walsh-Fourier transform, the continuous formulation of shallow neural networks as Wasserstein-type gradient flows, logarithmic quantum dynamical bounds for arithmetically defined ergodic Schrödinger operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multiplicative group generated by two primes in Z/QZ. It is hoped that this volume will inspire further research in the areas of analysis treated in this book and also provide direction and guidance for upcoming developments in this essential subject of mathematics.



Introduction To Quantum Graphs


Introduction To Quantum Graphs
DOWNLOAD
Author : Gregory Berkolaiko
language : en
Publisher: American Mathematical Soc.
Release Date : 2013

Introduction To Quantum Graphs written by Gregory Berkolaiko and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.


A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.



Perturbation Theory


Perturbation Theory
DOWNLOAD
Author : Giuseppe Gaeta
language : en
Publisher: Springer Nature
Release Date : 2022-12-16

Perturbation Theory written by Giuseppe Gaeta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-16 with Science categories.


This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.



Mathematics Of Complexity And Dynamical Systems


Mathematics Of Complexity And Dynamical Systems
DOWNLOAD
Author : Robert A. Meyers
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-05

Mathematics Of Complexity And Dynamical Systems written by Robert A. Meyers and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-05 with Mathematics categories.


Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.



Spectral Geometry


Spectral Geometry
DOWNLOAD
Author : Pierre H. Berard
language : en
Publisher: Springer
Release Date : 2006-11-14

Spectral Geometry written by Pierre H. Berard and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.




Mathematical Reviews


Mathematical Reviews
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1998

Mathematical Reviews written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.




Mathematics For Physics


Mathematics For Physics
DOWNLOAD
Author : Michael Stone
language : en
Publisher: Cambridge University Press
Release Date : 2009-07-09

Mathematics For Physics written by Michael Stone and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-09 with Science categories.


An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.



Important Developments In Soliton Theory


Important Developments In Soliton Theory
DOWNLOAD
Author : A.S. Fokas
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Important Developments In Soliton Theory written by A.S. Fokas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.