Growth Curve And Structural Equation Modeling

DOWNLOAD
Download Growth Curve And Structural Equation Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Growth Curve And Structural Equation Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Growth Curve And Structural Equation Modeling
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher:
Release Date : 2015
Growth Curve And Structural Equation Modeling written by Ratan Dasgupta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Economic development categories.
This book describes some recent trends in GCM research on different subject areas, both theoretical and applied. This includes tools and possibilities for further work through new techniques and modification of existing ones. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves in longitudinal studies are used in disciplines including biology, statistics, population studies, economics, biological sciences, sociology, nano-biotechnology, and fluid mechanics. The volume includes original studies, theoretical findings and case studies from a wide range of applied work. This volume builds on presentations from a GCM workshop held at the Indian Statistical Institute, Giridih, January 18-19, 2014. This book follows the volume Advances in Growth Curve Models, published by Springer in 2013. The results have meaningful application in health care, prediction of crop yield, child nutrition, poverty measurements, estimation of growth rate, and other research areas.
Growth Curve And Structural Equation Modeling
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher: Springer
Release Date : 2015-05-29
Growth Curve And Structural Equation Modeling written by Ratan Dasgupta and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-29 with Medical categories.
This book describes some recent trends in GCM research on different subject areas, both theoretical and applied. This includes tools and possibilities for further work through new techniques and modification of existing ones. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves in longitudinal studies are used in disciplines including biology, statistics, population studies, economics, biological sciences, sociology, nano-biotechnology, and fluid mechanics. The volume includes original studies, theoretical findings and case studies from a wide range of applied work. This volume builds on presentations from a GCM workshop held at the Indian Statistical Institute, Giridih, January 18-19, 2014. This book follows the volume Advances in Growth Curve Models, published by Springer in 2013. The results have meaningful application in health care, prediction of crop yield, child nutrition, poverty measurements, estimation of growth rate, and other research areas.
Advances In Growth Curve And Structural Equation Modeling
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher: Springer
Release Date : 2018-09-03
Advances In Growth Curve And Structural Equation Modeling written by Ratan Dasgupta and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Business & Economics categories.
This book explains and explores the growth curve model as a tool to gain insights into various research topics of interest to academics and practitioners alike. It includes studies on growth models for repeated measurement mixture experiments, and optimal designs for growth prediction in order to find an optimum design for the most efficient estimation of the parameters of the mixture models. It presents longitudinal studies conducted on the mathematical aptitude and intelligence quotient of tribal population in North Eastern states of India, and innovative statistical analysis showing that the status of tribes is improving over time. These results are supplemented by similar cross- sectional studies, and a retrospective longitudinal study of the social environment in North Eastern tribes indicating that the growth status of the social environment is improving. Child health is an important topic in developing countries, and as such the book features an overview of the growth and nutritional status of children aged 5 to 18 in India. Characterization of Extended Uniform Distribution and its applications for quality control in industrial production, and in yield data of tuber crops among others are discussed. Characterizations of distribution in terms of performance rate are also proved. There is also a contribution examining the past and present status of mangroves in Sunderban region of the Indian state of West Bengal from an ecological viewpoint using a growth curve model set-up. Lastly, it includes a chapter on a statistical study of platelet size decomposition and related growth model. Highlighting the importance of growth curve modelling as it applies to actual field data and encouraging more theoretically inclined statisticians to look into theoretical issues that need investigation, the book disseminates applications of the growth curve model to real-world problems and addresses related theoretical issues for the attention of theoreticians and practitioners.
Advances In Growth Curve And Structural Equation Modeling
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher: Springer
Release Date : 2018-09-19
Advances In Growth Curve And Structural Equation Modeling written by Ratan Dasgupta and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-19 with Business & Economics categories.
This book describes recent trends in growth curve modelling research in various subject areas, both theoretical and applied. It explains and explores the growth curve model as a valuable tool for gaining insights into several research topics of interest to academics and practitioners alike. The book’s primary goal is to disseminate applications of the growth curve model to real-world problems, and to address related theoretical issues. The book will be of interest to a broad readership: for applied statisticians, it illustrates the importance of growth curve modelling as applied to actual field data; for more theoretically inclined statisticians, it highlights a number of theoretical issues that warrant further investigation.
An Introduction To Latent Variable Growth Curve Modeling
DOWNLOAD
Author : Terry E. Duncan
language : en
Publisher: Routledge
Release Date : 2006
An Introduction To Latent Variable Growth Curve Modeling written by Terry E. Duncan and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader's familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book's CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters--growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.
Higher Order Growth Curves And Mixture Modeling With Mplus
DOWNLOAD
Author : Kandauda A.S. Wickrama
language : en
Publisher: Routledge
Release Date : 2016-04-14
Higher Order Growth Curves And Mixture Modeling With Mplus written by Kandauda A.S. Wickrama and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-14 with Psychology categories.
This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.
An Introduction To Latent Variable Growth Curve Modeling
DOWNLOAD
Author : Terry E. Duncan
language : en
Publisher: Routledge
Release Date : 2013-05-13
An Introduction To Latent Variable Growth Curve Modeling written by Terry E. Duncan and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-13 with Business & Economics categories.
This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader’s familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book’s CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters—growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.
A Beginner S Guide To Structural Equation Modeling
DOWNLOAD
Author : Randall E. Schumacker
language : en
Publisher: Routledge
Release Date : 2015-12-22
A Beginner S Guide To Structural Equation Modeling written by Randall E. Schumacker and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-22 with Psychology categories.
Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.
Structural Equation Modeling With Amos
DOWNLOAD
Author : Barbara M. Byrne
language : en
Publisher: Routledge
Release Date : 2013-09-13
Structural Equation Modeling With Amos written by Barbara M. Byrne and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-13 with Education categories.
This bestselling text provides a practical guide to the basic concepts of structural equation modeling (SEM) and the AMOS program (Versions 17 & 18). The author reviews SEM applications based on actual data taken from her research. Noted for its non-mathematical language, this book is written for the novice SEM user. With each chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed an illustration of the hypothesized and posthoc models tested AMOS input and output with accompanying interpretation and explanation The function of the AMOS toolbar icons and their related pull-down menus The data and published reference upon which the model was based. With over 50% new material, highlights of the new edition include: All new screen shots featuring Version 17 of the AMOS program All data files now available at www.routledge.com/9780805863734 Application of a multitrait-mulitimethod model, latent growth curve model, and?second-order model based on categorical data All applications based on the most commonly used graphical interface The automated multi-group approach to testing for equivalence The book opens with an introduction to the fundamental concepts of SEM and the basics of the AMOS program. The next 3 sections present applications that focus on single-group, multiple-group, and multitrait-mutimethod and latent growth curve models. The book concludes with a discussion about non-normal and missing (incomplete) data and two applications capable of addressing these issues. Intended for researchers, practitioners, and students who use SEM and AMOS in their work, this book is an ideal resource for graduate level courses on SEM taught in departments of psychology, education, business, and other social and health sciences and/or as a supplement in courses on applied statistics, multivariate statistics, statistics II, intermediate or advanced statistics, and/or research design. Appropriate for those with limited or no previous exposure to SEM, a prerequisite of basic statistics through regression analysis is recommended.
Longitudinal Structural Equation Modeling
DOWNLOAD
Author : Jason T. Newsom
language : en
Publisher: Taylor & Francis
Release Date : 2023-10-31
Longitudinal Structural Equation Modeling written by Jason T. Newsom and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-31 with Psychology categories.
Longitudinal Structural Equation Modeling is a comprehensive resource that reviews structural equation modeling (SEM) strategies for longitudinal data to help readers determine which modeling options are available for which hypotheses. This accessibly written book explores a range of models, from basic to sophisticated, including the statistical and conceptual underpinnings that are the building blocks of the analyses. By exploring connections between models, it demonstrates how SEM is related to other longitudinal data techniques and shows when to choose one analysis over another. Newsom emphasizes concepts and practical guidance for applied research rather than focusing on mathematical proofs, and new terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues and each chapter also includes examples of each model type, descriptions of model extensions, comment sections that provide practical guidance, and recommended readings. Expanded with new and updated material, this edition includes many recent developments, a new chapter on growth mixture modeling, and new examples. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this new edition will continue to appeal to researchers in these fields.