Growth Curve Models And Applications

DOWNLOAD
Download Growth Curve Models And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Growth Curve Models And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Growth Curve Models And Applications
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher: Springer
Release Date : 2018-08-11
Growth Curve Models And Applications written by Ratan Dasgupta and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-11 with Mathematics categories.
Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas. There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of applied work, and these contributions have been externally refereed to the high quality standards of leading journals in the field.
Hierarchical Linear Modeling
DOWNLOAD
Author : G. David Garson
language : en
Publisher: SAGE
Release Date : 2013
Hierarchical Linear Modeling written by G. David Garson and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Growth Curve Modeling
DOWNLOAD
Author : Michael J. Panik
language : en
Publisher: John Wiley & Sons
Release Date : 2014-01-13
Growth Curve Modeling written by Michael J. Panik and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-13 with Mathematics categories.
Features recent trends and advances in the theory and techniques used to accurately measure and model growth Growth Curve Modeling: Theory and Applications features an accessible introduction to growth curve modeling and addresses how to monitor the change in variables over time since there is no “one size fits all” approach to growth measurement. A review of the requisite mathematics for growth modeling and the statistical techniques needed for estimating growth models are provided, and an overview of popular growth curves, such as linear, logarithmic, reciprocal, logistic, Gompertz, Weibull, negative exponential, and log-logistic, among others, is included. In addition, the book discusses key application areas including economic, plant, population, forest, and firm growth and is suitable as a resource for assessing recent growth modeling trends in the medical field. SAS® is utilized throughout to analyze and model growth curves, aiding readers in estimating specialized growth rates and curves. Including derivations of virtually all of the major growth curves and models, Growth Curve Modeling: Theory and Applications also features: • Statistical distribution analysis as it pertains to growth modeling • Trend estimations • Dynamic site equations obtained from growth models • Nonlinear regression • Yield-density curves • Nonlinear mixed effects models for repeated measurements data Growth Curve Modeling: Theory and Applications is an excellent resource for statisticians, public health analysts, biologists, botanists, economists, and demographers who require a modern review of statistical methods for modeling growth curves and analyzing longitudinal data. The book is also useful for upper-undergraduate and graduate courses on growth modeling.
Higher Order Growth Curves And Mixture Modeling With Mplus
DOWNLOAD
Author : Kandauda A.S. Wickrama
language : en
Publisher: Routledge
Release Date : 2016-04-14
Higher Order Growth Curves And Mixture Modeling With Mplus written by Kandauda A.S. Wickrama and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-14 with Psychology categories.
This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.
Advances In Growth Curve Models
DOWNLOAD
Author : Ratan Dasgupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-23
Advances In Growth Curve Models written by Ratan Dasgupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-23 with Mathematics categories.
Advances in Growth Curve Models: Topics from the Indian Statistical Institute is developed from the Indian Statistical Institute's A National Conference on Growth Curve Models. This conference took place between March 28-30, 2012 in Giridih, Jharkhand, India. Jharkhand is a tribal area. Advances in Growth Curve Models: Topics from the Indian Statistical Institute shares the work of researchers in growth models used in multiple fields. A growth curve is an empirical model of the evolution of a quantity over time. Case studies and theoretical findings, important applications in everything from health care to population projection, form the basis of this volume. Growth curves in longitudinal studies are widely used in many disciplines including: Biology, Population studies, Economics, Biological Sciences, SQC, Sociology, Nano-biotechnology, and Fluid mechanics. Some included reports are research topics that have just been developed, whereas others present advances in existing literature. Both included tools and techniques will assist students and researchers in their future work. Also included is a discussion of future applications of growth curve models.
Growth Curve Models And Statistical Diagnostics
DOWNLOAD
Author : Jian-Xin Pan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-06
Growth Curve Models And Statistical Diagnostics written by Jian-Xin Pan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-06 with Mathematics categories.
Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.
Recent Developments On Structural Equation Models
DOWNLOAD
Author : Kees van Montfort
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-04-30
Recent Developments On Structural Equation Models written by Kees van Montfort and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-30 with Psychology categories.
After Karl Jöreskog's first presentation in 1970, Structural Equation Modelling or SEM has become a main statistical tool in many fields of science. It is the standard approach of factor analytic and causal modelling in such diverse fields as sociology, education, psychology, economics, management and medical sciences. In addition to an extension of its application area, Structural Equation Modelling also features a continual renewal and extension of its theoretical background. The sixteen contributions to this book, written by experts from many countries, present important new developments and interesting applications in Structural Equation Modelling. The book addresses methodologists and statisticians professionally dealing with Structural Equation Modelling to enhance their knowledge of the type of models covered and the technical problems involved in their formulation. In addition, the book offers applied researchers new ideas about the use of Structural Equation Modeling in solving their problems. Finally, methodologists, mathematicians and applied researchers alike are addressed, who simply want to update their knowledge of recent approaches in data analysis and mathematical modelling.
Latent Curve Models
DOWNLOAD
Author : Kenneth A. Bollen
language : en
Publisher: John Wiley & Sons
Release Date : 2006-01-03
Latent Curve Models written by Kenneth A. Bollen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-03 with Mathematics categories.
An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.
Growth Curve Analysis And Visualization Using R
DOWNLOAD
Author : Daniel Mirman
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Growth Curve Analysis And Visualization Using R written by Daniel Mirman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.
Learn How to Use Growth Curve Analysis with Your Time Course Data An increasingly prominent statistical tool in the behavioral sciences, multilevel regression offers a statistical framework for analyzing longitudinal or time course data. It also provides a way to quantify and analyze individual differences, such as developmental and neuropsychological, in the context of a model of the overall group effects. To harness the practical aspects of this useful tool, behavioral science researchers need a concise, accessible resource that explains how to implement these analysis methods. Growth Curve Analysis and Visualization Using R provides a practical, easy-to-understand guide to carrying out multilevel regression/growth curve analysis (GCA) of time course or longitudinal data in the behavioral sciences, particularly cognitive science, cognitive neuroscience, and psychology. With a minimum of statistical theory and technical jargon, the author focuses on the concrete issue of applying GCA to behavioral science data and individual differences. The book begins with discussing problems encountered when analyzing time course data, how to visualize time course data using the ggplot2 package, and how to format data for GCA and plotting. It then presents a conceptual overview of GCA and the core analysis syntax using the lme4 package and demonstrates how to plot model fits. The book describes how to deal with change over time that is not linear, how to structure random effects, how GCA and regression use categorical predictors, and how to conduct multiple simultaneous comparisons among different levels of a factor. It also compares the advantages and disadvantages of approaches to implementing logistic and quasi-logistic GCA and discusses how to use GCA to analyze individual differences as both fixed and random effects. The final chapter presents the code for all of the key examples along with samples demonstrating how to report GCA results. Throughout the book, R code illustrates how to implement the analyses and generate the graphs. Each chapter ends with exercises to test your understanding. The example datasets, code for solutions to the exercises, and supplemental code and examples are available on the author’s website.
An Introduction To Latent Variable Growth Curve Modeling
DOWNLOAD
Author : Terry E. Duncan
language : en
Publisher: Routledge
Release Date : 2013-05-13
An Introduction To Latent Variable Growth Curve Modeling written by Terry E. Duncan and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-13 with Business & Economics categories.
This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader’s familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book’s CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters—growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.