Handbook Of Deep Learning Models For Healthcare Data Processing

DOWNLOAD
Download Handbook Of Deep Learning Models For Healthcare Data Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Deep Learning Models For Healthcare Data Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Handbook Of Deep Learning Models For Healthcare Data Processing
DOWNLOAD
Author : Ajay Kumar
language : en
Publisher:
Release Date : 2025
Handbook Of Deep Learning Models For Healthcare Data Processing written by Ajay Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025 with Medical categories.
"In recent years, deep learning has shown great potential in transforming various fields, including healthcare. With the abundance of healthcare data being generated every day, there is a pressing need to develop efficient algorithms that can process and analyze this data to improve patient care and treatment outcomes. Written to be used as a comprehensive guide for healthcare professionals, researchers, and data analysts, this handbook is an essential need for those who are interested in using deep learning models to analyze and process healthcare data. It is also suitable for those who have a basic understanding of machine learning and want to learn more about the latest advancements in deep learning in healthcare"--
Handbook Of Deep Learning Models For Healthcare Data Processing
DOWNLOAD
Author : Ajay Kumar
language : en
Publisher: CRC Press
Release Date : 2025-06-30
Handbook Of Deep Learning Models For Healthcare Data Processing written by Ajay Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-30 with Technology & Engineering categories.
In recent years, deep learning has shown great potential in transforming various fields including healthcare. With the abundance of healthcare data being generated every day, there is a pressing need to develop efficient algorithms that can process and analyze this data to improve patient care and treatment outcomes. Handbook of Deep Learning Models for Healthcare Data Processing: Disease Prediction, Analysis, and Applications covers a wide range of deep learning models, techniques, and applications in healthcare data processing, analysis, and disease prediction, providing a comprehensive overview of the field. It focuses on the practical application of deep learning models in healthcare and offers step-by-step instructions for building and deploying models and using real-world examples. The handbook discusses the potential future applications of deep learning models in healthcare, such as precision medicine, personalized treatment, and clinical decision support. It also addresses the ethical considerations associated with the use of deep learning models in healthcare, such as privacy, security, and bias. It provides technical details on deep learning models, including their architecture, training methods, and optimization techniques, making it useful for data scientists and researchers. Written to be a comprehensive guide for healthcare professionals, researchers, and data analysts, this handbook is an essential need for those who are interested in using deep learning models to analyze and process healthcare data. It is also suitable for those who have a basic understanding of machine learning and want to learn more about the latest advancements in deep learning in healthcare.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Handbook Of Computational Intelligence In Biomedical Engineering And Healthcare
DOWNLOAD
Author : Janmenjoy Nayak
language : en
Publisher: Elsevier
Release Date : 2021-04-14
Handbook Of Computational Intelligence In Biomedical Engineering And Healthcare written by Janmenjoy Nayak and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-14 with Medical categories.
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence Helps readers analyze and do advanced research in specialty healthcare applications Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Handbook Of Research On Deep Learning Based Image Analysis Under Constrained And Unconstrained Environments
DOWNLOAD
Author : Raj, Alex Noel Joseph
language : en
Publisher: IGI Global
Release Date : 2020-12-25
Handbook Of Research On Deep Learning Based Image Analysis Under Constrained And Unconstrained Environments written by Raj, Alex Noel Joseph and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-25 with Computers categories.
Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
Handbook Of Research On Applied Intelligence For Health And Clinical Informatics
DOWNLOAD
Author : Thakare, Anuradha Dheeraj
language : en
Publisher: IGI Global
Release Date : 2021-10-22
Handbook Of Research On Applied Intelligence For Health And Clinical Informatics written by Thakare, Anuradha Dheeraj and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-22 with Medical categories.
Currently, informatics within the field of public health is a developing and growing industry. Clinical informatics are used in direct patient care by supplying medical practitioners with information that can be used to develop a care plan. Intelligent applications in clinical informatics facilitates with the technology-based solutions to analyze data or medical images and help clinicians to retrieve that information. Decision models aid with making complex decisions especially in uncertain situations. The Handbook of Research on Applied Intelligence for Health and Clinical Informatics is a comprehensive reference book that focuses on the study of resources and methods for the management of healthcare infrastructure and information. This book provides insights on how applied intelligence with deep learning, experiential learning, and more will impact healthcare and clinical information processing. The content explores the representation, processing, and communication of clinical information in natural and engineered systems. This book covers a range of topics including applied intelligence, medical imaging, telehealth, and decision support systems, and also looks at technologies and tools used in the detection and diagnosis of medical conditions such as cancers, diabetes, heart disease, lung disease, and prenatal syndromes. It is an essential reference source for diagnosticians, medical professionals, imaging specialists, data specialists, IT consultants, medical technologists, academicians, researchers, industrial experts, scientists, and students.
Handbook Of Research On Emerging Trends And Applications Of Machine Learning
DOWNLOAD
Author : Solanki, Arun
language : en
Publisher: IGI Global
Release Date : 2019-12-13
Handbook Of Research On Emerging Trends And Applications Of Machine Learning written by Solanki, Arun and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-13 with Computers categories.
As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.
Smart Healthcare Systems
DOWNLOAD
Author : Adwitiya Sinha
language : en
Publisher: CRC Press
Release Date : 2019-07-24
Smart Healthcare Systems written by Adwitiya Sinha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-24 with Computers categories.
About the Book The book provides details of applying intelligent mining techniques for extracting and pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. This book would provide insight to the learners about Machine Learning, Data Analytics, and Sustainable Computing. Salient Features of the Book Exhaustive coverage of Data Analysis using R Real-life healthcare models for: Visually Impaired Disease Diagnosis and Treatment options Applications of Big Data and Deep Learning in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare and analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions.
Handbook Of Data Science Approaches For Biomedical Engineering
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Academic Press
Release Date : 2019-11-13
Handbook Of Data Science Approaches For Biomedical Engineering written by Valentina Emilia Balas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Science categories.
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Handbook Of Neural Computation
DOWNLOAD
Author : Pijush Samui
language : en
Publisher: Academic Press
Release Date : 2017-07-18
Handbook Of Neural Computation written by Pijush Samui and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-18 with Technology & Engineering categories.
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods