[PDF] Handbook Of The Geometry Of Banach Spaces - eBooks Review

Handbook Of The Geometry Of Banach Spaces


Handbook Of The Geometry Of Banach Spaces
DOWNLOAD

Download Handbook Of The Geometry Of Banach Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of The Geometry Of Banach Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Handbook Of The Geometry Of Banach Spaces


Handbook Of The Geometry Of Banach Spaces
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2001-08-15

Handbook Of The Geometry Of Banach Spaces written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-15 with Mathematics categories.


The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.



Handbook Of The Geometry Of Banach Spaces


Handbook Of The Geometry Of Banach Spaces
DOWNLOAD
Author : William B. Johnson
language : en
Publisher:
Release Date : 2001

Handbook Of The Geometry Of Banach Spaces written by William B. Johnson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with categories.




Handbook Of The Geometry Of Banach Spaces


Handbook Of The Geometry Of Banach Spaces
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2001

Handbook Of The Geometry Of Banach Spaces written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with categories.




Handbook Of The Geometry Of Banach Spaces


Handbook Of The Geometry Of Banach Spaces
DOWNLOAD
Author :
language : en
Publisher:
Release Date :

Handbook Of The Geometry Of Banach Spaces written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Elements Of Geometry Of Balls In Banach Spaces


Elements Of Geometry Of Balls In Banach Spaces
DOWNLOAD
Author : Kazimierz Goebel
language : en
Publisher: Oxford University Press
Release Date : 2018-09-06

Elements Of Geometry Of Balls In Banach Spaces written by Kazimierz Goebel and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-06 with Mathematics categories.


One of the subjects of functional analysis is classification of Banach spaces depending on various properties of the unit ball. The need of such considerations comes from a number of applications to problems of mathematical analysis. The list of subjects includes: differential calculus in normed spaces, approximation theory, weak topologies and reflexivity, general theory of convexity and convex functions, metric fixed point theory and others. The book presents basic facts from this field.



Open Problems In The Geometry And Analysis Of Banach Spaces


Open Problems In The Geometry And Analysis Of Banach Spaces
DOWNLOAD
Author : Antonio J. Guirao
language : en
Publisher: Springer
Release Date : 2016-07-26

Open Problems In The Geometry And Analysis Of Banach Spaces written by Antonio J. Guirao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-26 with Mathematics categories.


This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems are longstanding open problems, some are recent, some are more important and some are only local problems. Some would require new ideas, some may be resolved with only a subtle combination of known facts. Regardless of their origin or longevity, each of these problems documents the need for further research in this area.



Topics In Banach Space Theory


Topics In Banach Space Theory
DOWNLOAD
Author : Fernando Albiac
language : en
Publisher: Springer
Release Date : 2016-07-19

Topics In Banach Space Theory written by Fernando Albiac and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-19 with Mathematics categories.


This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews



Handbook Of Metric Fixed Point Theory


Handbook Of Metric Fixed Point Theory
DOWNLOAD
Author : William Kirk
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-30

Handbook Of Metric Fixed Point Theory written by William Kirk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-30 with Mathematics categories.


Preface. 1. Contraction Mappings and Extensions; W.A. Kirk. 2. Examples of Fixed Point Free Mappings; B. Sims. 3. Classical Theory of Nonexpansive Mappings; K. Goebel, W.A. Kirk. 4. Geometrical Background of Metric Fixed Point Theory; S. Prus. 5. Some Moduli and Constants Related to Metric Fixed Point Theory; E.L. Fuster. 6. Ultra-Methods in Metric Fixed Point Theory; M.A. Khamsi, B. Sims. 7. Stability of the Fixed Point Property for Nonexpansive Mappings; J. Garcia-Falset, A. Jiménez-Melado, E. Llorens-Fuster. 8. Metric Fixed Point Results Concerning Measures of Noncompactness; T. Dominguez, M.A. JapÃ3n, G. LÃ3pez. 9. Renormings of l1 and c0 and Fixed Point Properties; P.N. Dowling, C.J. Lennard, B. Turett. 10. Nonexpansive Mappings: Boundary/Inwardness Conditions and Local Theory; W.A. Kirk, C.H. Morales. 11. Rotative Mappings and Mappings with Constant Displacement; W. Kaczor, M. Koter-MÃ3rgowska. 12. Geometric Properties Related to Fixed Point Theory in Some Banach Function Lattices; S. Chen, Y. Cui, H. Hudzik, B. Sims. 13. Introduction to Hyperconvex Spaces; R. Espinola, M.A. Khamsi. 14. Fixed Points of Holomorphic Mappings: A Metric Approach; T. Kuczumow, S. Reich, D. Shoikhet. 15. Fixed Point and Non-Linear Ergodic Theorems for Semigroups of Non-Linear Mappings; A. To-Ming Lau, W. Takahashi. 16. Generic Aspects of Metric Fixed Point Theory; S. Reich, A.J. Zaslavski. 17. Metric Environment of the Topological Fixed Point Theorms; K. Goebel. 18. Order-Theoretic Aspects of Metric Fixed Point Theory; J. Jachymski. 19. Fixed Point and Related Theorems for Set-Valued Mappings; G.X.-Z. Yuan. Index.



Handbook Of Analysis And Its Foundations


Handbook Of Analysis And Its Foundations
DOWNLOAD
Author : Eric Schechter
language : en
Publisher: Academic Press
Release Date : 1996-10-24

Handbook Of Analysis And Its Foundations written by Eric Schechter and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-10-24 with Mathematics categories.


Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/



Banach Spaces And Descriptive Set Theory Selected Topics


Banach Spaces And Descriptive Set Theory Selected Topics
DOWNLOAD
Author : Pandelis Dodos
language : en
Publisher: Springer
Release Date : 2010-04-15

Banach Spaces And Descriptive Set Theory Selected Topics written by Pandelis Dodos and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-15 with Mathematics categories.


These notes are devoted to the study of some classical problems in the Geometry of Banach spaces. The novelty lies in the fact that their solution relies heavily on techniques coming from Descriptive Set Theory. Thecentralthemeisuniversalityproblems.Inparticular,thetextprovides an exposition of the methods developed recently in order to treat questions of the following type: (Q) LetC be a class of separable Banach spaces such that every space X in the classC has a certain property, say property (P). When can we ?nd a separable Banach space Y which has property (P) and contains an isomorphic copy of every member ofC? We will consider quite classical properties of Banach spaces, such as “- ing re?exive,” “having separable dual,” “not containing an isomorphic copy of c ,” “being non-universal,” etc. 0 It turns out that a positive answer to problem (Q), for any of the above mentioned properties, is possible if (and essentially only if) the classC is “simple.” The “simplicity” ofC is measured in set theoretic terms. Precisely, if the classC is analytic in a natural “coding” of separable Banach spaces, then we can indeed ?nd a separable space Y which is universal for the class C and satis?es the requirements imposed above.