[PDF] Hands On Data Science For Biologists Using Python - eBooks Review

Hands On Data Science For Biologists Using Python


Hands On Data Science For Biologists Using Python
DOWNLOAD

Download Hands On Data Science For Biologists Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Data Science For Biologists Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Data Science For Biologists Using Python


Hands On Data Science For Biologists Using Python
DOWNLOAD
Author : Yasha Hasija
language : en
Publisher: CRC Press
Release Date : 2021-04-08

Hands On Data Science For Biologists Using Python written by Yasha Hasija and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Computers categories.


Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models.



Hands On Data Science And Python Machine Learning


Hands On Data Science And Python Machine Learning
DOWNLOAD
Author : Frank Kane
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-31

Hands On Data Science And Python Machine Learning written by Frank Kane and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-31 with Computers categories.


This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2017-02-22

Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-22 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.



All About Bioinformatics


All About Bioinformatics
DOWNLOAD
Author : Yasha Hasija
language : en
Publisher: Elsevier
Release Date : 2023-04-05

All About Bioinformatics written by Yasha Hasija and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-05 with Science categories.


All About Bioinformatics: From Beginner to Expert provides readers with an overview of the fundamentals and advances in the _x001F_field of bioinformatics, as well as some future directions. Each chapter is didactically organized and includes introduction, applications, tools, and future directions to cover the topics thoroughly. The book covers both traditional topics such as biological databases, algorithms, genetic variations, static methods, and structural bioinformatics, as well as contemporary advanced topics such as high-throughput technologies, drug informatics, system and network biology, and machine learning. It is a valuable resource for researchers and graduate students who are interested to learn more about bioinformatics to apply in their research work. - Presents a holistic learning experience, beginning with an introduction to bioinformatics to recent advancements in the field - Discusses bioinformatics as a practice rather than in theory focusing on more application-oriented topics as high-throughput technologies, system and network biology, and workflow management systems - Encompasses chapters on statistics and machine learning to assist readers in deciphering trends and patterns in biological data



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Bioinformatics Programming Using Python


Bioinformatics Programming Using Python
DOWNLOAD
Author : Mitchell L Model
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2009-12-08

Bioinformatics Programming Using Python written by Mitchell L Model and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-08 with Science categories.


Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter



Data Science For Immunologists


Data Science For Immunologists
DOWNLOAD
Author : Niclas Thomas
language : en
Publisher:
Release Date : 2018-02-17

Data Science For Immunologists written by Niclas Thomas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-17 with categories.


Data science is a complex subject, but nevertheless one that can be made accessible to all through clear, intuitive explanations and worked examples. Existing software that forms the backbone of an immunologist's analytical toolkit (such as FlowJo and Prism) are expensive, inflexible and promotes a narrow mindset when it comes to analysing your data. On the other hand, the Python and R programming languages are open source, free and entirely customisable, giving the user the ability to implement any analysis they wish. Although programming languages can seem daunting to the uninitiated, it's far easier to learn than many immunologists may think. Rather than seeking to become an expert programmer, an understanding of the main concepts is more than enough to conduct your own bespoke analyses when coupled with a sound mathematical and statistical understanding. Our new book focusses on the practical aspects of data science, providing sufficient theoretical background without delving into all of the details of each of the methods presented. Introductory chapters are presented alongside the analysis of a publicly available data set, allowing the reader to have practical hands-on experience when learning about important concepts in statistics, machine learning and programming. Topics include: - How to build a predictive model How to visualise high-dimensional data Basics of programming in Python and R What techniques exist to cluster data Which statistics test to use/why/when What is dimension reduction; when and how to use it Once these fundamental topics have been covered, a number of case studies are presented, along with the underlying data, accompanying code and full explanations on topics such as automated, data-driven flow cytometry, building predictive models of disease using gene expression profiling and analysing high throughput sequencing data.



Python Programming For Biology


Python Programming For Biology
DOWNLOAD
Author : Tim J. Stevens
language : en
Publisher: Cambridge University Press
Release Date : 2015-02-12

Python Programming For Biology written by Tim J. Stevens and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-12 with Computers categories.


This book introduces Python as a powerful tool for the investigation of problems in computational biology, for novices and experienced programmers alike.



Python For Scientists


Python For Scientists
DOWNLOAD
Author : John M. Stewart
language : en
Publisher: Cambridge University Press
Release Date : 2017-07-20

Python For Scientists written by John M. Stewart and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-20 with Computers categories.


Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.



Practical Machine Learning For Data Analysis Using Python


Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-07

Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-07 with Computers categories.


Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems.