Hands On Data Science For Librarians

DOWNLOAD
Download Hands On Data Science For Librarians PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Data Science For Librarians book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Data Science For Librarians
DOWNLOAD
Author : Sarah Lin
language : en
Publisher: CRC Press
Release Date : 2023-05-09
Hands On Data Science For Librarians written by Sarah Lin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-09 with Business & Economics categories.
Librarians understand the need to store, use and analyze data related to their collection, patrons and institution, and there has been consistent interest over the last 10 years to improve data management, analysis, and visualization skills within the profession. However, librarians find it difficult to move from out-of-the-box proprietary software applications to the skills necessary to perform the range of data science actions in code. This book will focus on teaching R through relevant examples and skills that librarians need in their day-to-day lives that includes visualizations but goes much further to include web scraping, working with maps, creating interactive reports, machine learning, and others. While there’s a place for theory, ethics, and statistical methods, librarians need a tool to help them acquire enough facility with R to utilize data science skills in their daily work, no matter what type of library they work at (academic, public or special). By walking through each skill and its application to library work before walking the reader through each line of code, this book will support librarians who want to apply data science in their daily work. Hands-On Data Science for Librarians is intended for librarians (and other information professionals) in any library type (public, academic or special) as well as graduate students in library and information science (LIS). Key Features: Only data science book available geared toward librarians that includes step-by-step code examples Examples include all library types (public, academic, special) Relevant datasets Accessible to non-technical professionals Focused on job skills and their applications
A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02
A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Data Science For Librarians
DOWNLOAD
Author : Yunfei Du
language : en
Publisher: Libraries Unlimited
Release Date : 2020-03-26
Data Science For Librarians written by Yunfei Du and has been published by Libraries Unlimited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-26 with Computers categories.
More data, more problems -- A new strand of librarianship -- Data creation and collection -- Data for the academic librarian -- Research data services and the library ecosystem -- Data sources -- Data curation (archiving/preservation) -- Data storage, management, and retrieval -- Data analysis and visualization -- Data ethics and policies -- Data for public libraries and special libraries -- Conclusion: library, information, and data science.
Data Science For Librarians
DOWNLOAD
Author : Yunfei Du
language : en
Publisher: Bloomsbury Publishing USA
Release Date : 2020-03-26
Data Science For Librarians written by Yunfei Du and has been published by Bloomsbury Publishing USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-26 with Language Arts & Disciplines categories.
This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries. Data Science for Librarians introduces data science to students and practitioners in library services. Writing for academic, public, and school library managers; library science students; and library and information science educators, authors Yunfei Du and Hammad Rauf Khan provide a thorough overview of conceptual and practical tools for data librarian practice. Partially due to how quickly data science evolves, libraries have yet to recognize core competencies and skills required to perform the job duties of a data librarian. As society transitions from the information age into the era of big data, librarians and information professionals require new knowledge and skills to stay current and take on new job roles, such as data librarianship. Such skills as data curation, research data management, statistical analysis, business analytics, visualization, smart city data, and learning analytics are relevant in library services today and will become increasingly so in the near future. This text serves as a tool for library and information science students and educators working on data science curriculum design.
Hands On Scikit Learn For Machine Learning Applications
DOWNLOAD
Author : David Paper
language : en
Publisher: Apress
Release Date : 2019-11-16
Hands On Scikit Learn For Machine Learning Applications written by David Paper and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-16 with Mathematics categories.
Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine. All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complexmachine learning algorithms. Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python. What You'll Learn Work with simple and complex datasets common to Scikit-Learn Manipulate data into vectors and matrices for algorithmic processing Become familiar with the Anaconda distribution used in data science Apply machine learning with Classifiers, Regressors, and Dimensionality Reduction Tune algorithms and find the best algorithms for each dataset Load data from and save to CSV, JSON, Numpy, and Pandas formats Who This Book Is For The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.
Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2017-02-22
Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-22 with Computers categories.
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
The Data Librarian S Handbook
DOWNLOAD
Author : Robin Rice
language : en
Publisher: Facet Publishing
Release Date : 2016-12-20
The Data Librarian S Handbook written by Robin Rice and has been published by Facet Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-20 with Language Arts & Disciplines categories.
An insider’s guide to data librarianship packed full of practical examples and advice for any library and information professional learning to deal with data. Interest in data has been growing in recent years. Support for this peculiar class of digital information – its use, preservation and curation, and how to support researchers’ production and consumption of it in ever greater volumes to create new knowledge, is needed more than ever. Many librarians and information professionals are finding their working life is pulling them toward data support or research data management but lack the skills required. The Data Librarian’s Handbook, written by two data librarians with over 30 years’ combined experience, unpicks the everyday role of the data librarian and offers practical guidance on how to collect, curate and crunch data for economic, social and scientific purposes. With contemporary case studies from a range of institutions and disciplines, tips for best practice, study aids and links to key resources, this book is a must-read for all new entrants to the field, library and information students and working professionals. Key topics covered include: • the evolution of data libraries and data archives • handling data compared to other forms of information • managing and curating data to ensure effective use and longevity • how to incorporate data literacy into mainstream library instruction and information literacy training • how to develop an effective institutional research data management (RDM) policy and infrastructure • how to support and review a data management plan (DMP) for a project, a key requirement for most research funders • approaches for developing, managing and promoting data repositories • handling and sharing confidential or sensitive data • supporting open scholarship and open science, ensuring data are discoverable, accessible, intelligible and assessable. This title is for the practising data librarian, possibly new in their post with little experience of providing data support. It is also for managers and policy-makers, public service librarians, research data management coordinators and data support staff. It will also appeal to students and lecturers in iSchools and other library and information degree programmes where academic research support is taught.
Leveraging Data Science For Global Health
DOWNLOAD
Author : Leo Anthony Celi
language : en
Publisher: Springer Nature
Release Date : 2020-07-31
Leveraging Data Science For Global Health written by Leo Anthony Celi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Medical categories.
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Guide To Industrial Analytics
DOWNLOAD
Author : Richard Hill
language : en
Publisher: Springer Nature
Release Date : 2021-09-27
Guide To Industrial Analytics written by Richard Hill and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-27 with Computers categories.
This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.