[PDF] Hands On Image Generation With Tensorflow - eBooks Review

Hands On Image Generation With Tensorflow


Hands On Image Generation With Tensorflow
DOWNLOAD

Download Hands On Image Generation With Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Image Generation With Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Image Generation With Tensorflow


Hands On Image Generation With Tensorflow
DOWNLOAD
Author : Soon Yau Cheong
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-12-24

Hands On Image Generation With Tensorflow written by Soon Yau Cheong and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-24 with Computers categories.


Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch Key FeaturesUnderstand the different architectures for image generation, including autoencoders and GANsBuild models that can edit an image of your face, turn photos into paintings, and generate photorealistic imagesDiscover how you can build deep neural networks with advanced TensorFlow 2.x featuresBook Description The emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you’ll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You’ll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You’ll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you’ll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently. What you will learnTrain on face datasets and use them to explore latent spaces for editing new facesGet to grips with swapping faces with deepfakesPerform style transfer to convert a photo into a paintingBuild and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translationUse iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic imagesBecome well versed in attention generative models such as SAGAN and BigGANGenerate high-resolution photos with Progressive GAN and StyleGANWho this book is for The Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You’ll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.



Tensorflow Developer Certificate Guide


Tensorflow Developer Certificate Guide
DOWNLOAD
Author : Oluwole Fagbohun
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-09-29

Tensorflow Developer Certificate Guide written by Oluwole Fagbohun and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-29 with Computers categories.


Achieve TensorFlow certification with this comprehensive guide covering all exam topics using a hands-on, step-by-step approach—perfect for aspiring TensorFlow developers Key Features Build real-world computer vision, natural language, and time series applications Learn how to overcome issues such as overfitting with techniques such as data augmentation Master transfer learning—what it is and how to build applications with pre-trained models Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe TensorFlow Developer Certificate Guide is an indispensable resource for machine learning enthusiasts and data professionals seeking to master TensorFlow and validate their skills by earning the certification. This practical guide equips you with the skills and knowledge necessary to build robust deep learning models that effectively tackle real-world challenges across diverse industries. You’ll embark on a journey of skill acquisition through easy-to-follow, step-by-step explanations and practical examples, mastering the craft of building sophisticated models using TensorFlow 2.x and overcoming common hurdles such as overfitting and data augmentation. With this book, you’ll discover a wide range of practical applications, including computer vision, natural language processing, and time series prediction. To prepare you for the TensorFlow Developer Certificate exam, it offers comprehensive coverage of exam topics, including image classification, natural language processing (NLP), and time series analysis. With the TensorFlow certification, you’ll be primed to tackle a broad spectrum of business problems and advance your career in the exciting field of machine learning. Whether you are a novice or an experienced developer, this guide will propel you to achieve your aspirations and become a highly skilled TensorFlow professional. What you will learn Prepare for success in the TensorFlow Developer Certification exam Master regression and classification modelling with TensorFlow 2.x Build, train, evaluate, and fine-tune deep learning models Combat overfitting using techniques such as dropout and data augmentation Classify images, encompassing preprocessing and image data augmentation Apply TensorFlow for NLP tasks like text classification and generation Predict time series data, such as stock prices Explore real-world case studies and engage in hands-on exercises Who this book is forThis book is for machine learning and data science enthusiasts, as well as data professionals aiming to demonstrate their expertise in building deep learning applications with TensorFlow. Through a comprehensive hands-on approach, this book covers all the essential exam prerequisites to equip you with the skills needed to excel as a TensorFlow developer and advance your career in machine learning. A fundamental grasp of Python programming is the only prerequisite.



Production Ready Applied Deep Learning


Production Ready Applied Deep Learning
DOWNLOAD
Author : Tomasz Palczewski
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-08-30

Production Ready Applied Deep Learning written by Tomasz Palczewski and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-30 with Computers categories.


Supercharge your skills for developing powerful deep learning models and distributing them at scale efficiently using cloud services Key Features Understand how to execute a deep learning project effectively using various tools available Learn how to develop PyTorch and TensorFlow models at scale using Amazon Web Services Explore effective solutions to various difficulties that arise from model deployment Book Description Machine learning engineers, deep learning specialists, and data engineers encounter various problems when moving deep learning models to a production environment. The main objective of this book is to close the gap between theory and applications by providing a thorough explanation of how to transform various models for deployment and efficiently distribute them with a full understanding of the alternatives. First, you will learn how to construct complex deep learning models in PyTorch and TensorFlow. Next, you will acquire the knowledge you need to transform your models from one framework to the other and learn how to tailor them for specific requirements that deployment environments introduce. The book also provides concrete implementations and associated methodologies that will help you apply the knowledge you gain right away. You will get hands-on experience with commonly used deep learning frameworks and popular cloud services designed for data analytics at scale. Additionally, you will get to grips with the authors' collective knowledge of deploying hundreds of AI-based services at a large scale. By the end of this book, you will have understood how to convert a model developed for proof of concept into a production-ready application optimized for a particular production setting. What you will learn Understand how to develop a deep learning model using PyTorch and TensorFlow Convert a proof-of-concept model into a production-ready application Discover how to set up a deep learning pipeline in an efficient way using AWS Explore different ways to compress a model for various deployment requirements Develop Android and iOS applications that run deep learning on mobile devices Monitor a system with a deep learning model in production Choose the right system architecture for developing and deploying a model Who this book is for Machine learning engineers, deep learning specialists, and data scientists will find this book helpful in closing the gap between the theory and application with detailed examples. Beginner-level knowledge in machine learning or software engineering will help you grasp the concepts covered in this book easily.



Generative Ai With Python And Tensorflow 2


Generative Ai With Python And Tensorflow 2
DOWNLOAD
Author : Joseph Babcock
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-04-30

Generative Ai With Python And Tensorflow 2 written by Joseph Babcock and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-30 with Computers categories.


This edition is heavily outdated and we have a new edition with PyTorch examples published! Key Features Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along Look inside the most famous deep generative models, from GPT to MuseGAN Learn to build and adapt your own models in TensorFlow 2.x Explore exciting, cutting-edge use cases for deep generative AI Book DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.What you will learn Export the code from GitHub into Google Colab to see how everything works for yourself Compose music using LSTM models, simple GANs, and MuseGAN Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN Learn how attention and transformers have changed NLP Build several text generation pipelines based on LSTMs, BERT, and GPT-2 Implement paired and unpaired style transfer with networks like StyleGAN Discover emerging applications of generative AI like folding proteins and creating videos from images Who this book is for This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.



Hands On Generative Ai With Transformers And Diffusion Models


Hands On Generative Ai With Transformers And Diffusion Models
DOWNLOAD
Author : Omar Sanseviero
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2024-11-22

Hands On Generative Ai With Transformers And Diffusion Models written by Omar Sanseviero and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-22 with Computers categories.


Learn to use generative AI techniques to create novel text, images, audio, and even music with this practical, hands-on book. Readers will understand how state-of-the-art generative models work, how to fine-tune and adapt them to their needs, and how to combine existing building blocks to create new models and creative applications in different domains. This go-to book introduces theoretical concepts followed by guided practical applications, with extensive code samples and easy-to-understand illustrations. You'll learn how to use open source libraries to utilize transformers and diffusion models, conduct code exploration, and study several existing projects to help guide your work. Build and customize models that can generate text and images Explore trade-offs between using a pretrained model and fine-tuning your own model Create and utilize models that can generate, edit, and modify images in any style Customize transformers and diffusion models for multiple creative purposes Train models that can reflect your own unique style



Hands On Music Generation With Magenta


Hands On Music Generation With Magenta
DOWNLOAD
Author : Alexandre DuBreuil
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31

Hands On Music Generation With Magenta written by Alexandre DuBreuil and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Mathematics categories.


Design and use machine learning models for music generation using Magenta and make them interact with existing music creation tools Key FeaturesLearn how machine learning, deep learning, and reinforcement learning are used in music generationGenerate new content by manipulating the source data using Magenta utilities, and train machine learning models with itExplore various Magenta projects such as Magenta Studio, MusicVAE, and NSynthBook Description The importance of machine learning (ML) in art is growing at a rapid pace due to recent advancements in the field, and Magenta is at the forefront of this innovation. With this book, you’ll follow a hands-on approach to using ML models for music generation, learning how to integrate them into an existing music production workflow. Complete with practical examples and explanations of the theoretical background required to understand the underlying technologies, this book is the perfect starting point to begin exploring music generation. The book will help you learn how to use the models in Magenta for generating percussion sequences, monophonic and polyphonic melodies in MIDI, and instrument sounds in raw audio. Through practical examples and in-depth explanations, you’ll understand ML models such as RNNs, VAEs, and GANs. Using this knowledge, you’ll create and train your own models for advanced music generation use cases, along with preparing new datasets. Finally, you’ll get to grips with integrating Magenta with other technologies, such as digital audio workstations (DAWs), and using Magenta.js to distribute music generation apps in the browser. By the end of this book, you'll be well-versed with Magenta and have developed the skills you need to use ML models for music generation in your own style. What you will learnUse RNN models in Magenta to generate MIDI percussion, and monophonic and polyphonic sequencesUse WaveNet and GAN models to generate instrument notes in the form of raw audioEmploy Variational Autoencoder models like MusicVAE and GrooVAE to sample, interpolate, and humanize existing sequencesPrepare and create your dataset on specific styles and instrumentsTrain your network on your personal datasets and fix problems when training networksApply MIDI to synchronize Magenta with existing music production tools like DAWsWho this book is for This book is for technically inclined artists and musically inclined computer scientists. Readers who want to get hands-on with building generative music applications that use deep learning will also find this book useful. Although prior musical or technical competence is not required, basic knowledge of the Python programming language is assumed.



Hands On Unsupervised Learning Using Python


Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-02-21

Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks



Hands On Computer Vision With Tensorflow 2


Hands On Computer Vision With Tensorflow 2
DOWNLOAD
Author : Benjamin Planche
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-30

Hands On Computer Vision With Tensorflow 2 written by Benjamin Planche and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.


A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.



Machine Learning For Image Generation And Style Transfer


Machine Learning For Image Generation And Style Transfer
DOWNLOAD
Author : Dr. Atul Kumar Karn
language : en
Publisher: Xoffencer international book publication house
Release Date : 2024-07-15

Machine Learning For Image Generation And Style Transfer written by Dr. Atul Kumar Karn and has been published by Xoffencer international book publication house this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-15 with Computers categories.


Machine learning has significantly advanced the field of image generation and style transfer, leveraging the capabilities of deep neural networks to create and transform visual content in innovative ways. At its core, image generation involves the creation of new images from abstract representations or data-driven models. Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are prominent techniques in this domain, enabling the synthesis of high-quality, diverse images that can mimic or extend existing datasets. These models learn from vast amounts of data to capture intricate patterns and features, allowing them to generate visually compelling and contextually relevant images. Style transfer, on the other hand, focuses on altering the visual appearance of an image while preserving its underlying content. By applying the stylistic elements of one image to the content of another, style transfer algorithms achieve striking visual effects. Convolutional Neural Networks (CNNs) play a crucial role here, utilizing pre-trained networks to extract and blend the content and style features of images. This technique has led to a wide array of applications, from artistic image manipulation to enhancing visual aesthetics in various media. The integration of machine learning into these areas has not only expanded creative possibilities but also improved efficiency and quality in image processing tasks. As these technologies continue to evolve, they offer exciting opportunities for innovation across multiple domains, including digital art, entertainment, and even practical applications in design and media. In addition to their creative applications, machine learning techniques for image generation and style transfer are making significant strides in practical and industrial contexts. For instance, in the fashion industry, these technologies are employed to design virtual clothing and accessories, allowing designers to experiment with new styles and trends without the need for physical prototypes. Similarly, in architecture and interior design, style transfer methods help visualize how different design elements and styles would xviii look in real-world settings, facilitating better decision-making and client presentations. Moreover, advancements in image generation are driving progress in areas such as medical imaging and simulation. Generative models can produce synthetic medical images for training purposes or to augment limited datasets, thereby improving diagnostic accuracy and model performance. In robotics and autonomous systems, realistic image generation can enhance the training of visual perception algorithms, leading to more robust and reliable systems. 



Hands On Deep Learning With Apache Spark


Hands On Deep Learning With Apache Spark
DOWNLOAD
Author : Guglielmo Iozzia
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Hands On Deep Learning With Apache Spark written by Guglielmo Iozzia and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Speed up the design and implementation of deep learning solutions using Apache Spark Key FeaturesExplore the world of distributed deep learning with Apache SparkTrain neural networks with deep learning libraries such as BigDL and TensorFlowDevelop Spark deep learning applications to intelligently handle large and complex datasetsBook Description Deep learning is a subset of machine learning where datasets with several layers of complexity can be processed. Hands-On Deep Learning with Apache Spark addresses the sheer complexity of technical and analytical parts and the speed at which deep learning solutions can be implemented on Apache Spark. The book starts with the fundamentals of Apache Spark and deep learning. You will set up Spark for deep learning, learn principles of distributed modeling, and understand different types of neural nets. You will then implement deep learning models, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) on Spark. As you progress through the book, you will gain hands-on experience of what it takes to understand the complex datasets you are dealing with. During the course of this book, you will use popular deep learning frameworks, such as TensorFlow, Deeplearning4j, and Keras to train your distributed models. By the end of this book, you'll have gained experience with the implementation of your models on a variety of use cases. What you will learnUnderstand the basics of deep learningSet up Apache Spark for deep learningUnderstand the principles of distribution modeling and different types of neural networksObtain an understanding of deep learning algorithmsDiscover textual analysis and deep learning with SparkUse popular deep learning frameworks, such as Deeplearning4j, TensorFlow, and KerasExplore popular deep learning algorithms Who this book is for If you are a Scala developer, data scientist, or data analyst who wants to learn how to use Spark for implementing efficient deep learning models, Hands-On Deep Learning with Apache Spark is for you. Knowledge of the core machine learning concepts and some exposure to Spark will be helpful.