Hands On Natural Language Processing With Pytorch 1 X

DOWNLOAD
Download Hands On Natural Language Processing With Pytorch 1 X PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Natural Language Processing With Pytorch 1 X book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Natural Language Processing With Pytorch 1 X
DOWNLOAD
Author : Thomas Dop
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-09
Hands On Natural Language Processing With Pytorch 1 X written by Thomas Dop and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-09 with Computers categories.
Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key FeaturesGet to grips with word embeddings, semantics, labeling, and high-level word representations using practical examplesLearn modern approaches to NLP and explore state-of-the-art NLP models using PyTorchImprove your NLP applications with innovative neural networks such as RNNs, LSTMs, and CNNsBook Description In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you’ll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you’ll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You’ll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you’ll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you’ll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them. What you will learnUse NLP techniques for understanding, processing, and generating textUnderstand PyTorch, its applications and how it can be used to build deep linguistic modelsExplore the wide variety of deep learning architectures for NLPDevelop the skills you need to process and represent both structured and unstructured NLP dataBecome well-versed with state-of-the-art technologies and exciting new developments in the NLP domainCreate chatbots using attention-based neural networksWho this book is for This PyTorch book is for NLP developers, machine learning and deep learning developers, and anyone interested in building intelligent language applications using both traditional NLP approaches and deep learning architectures. If you’re looking to adopt modern NLP techniques and models for your development projects, this book is for you. Working knowledge of Python programming, along with basic working knowledge of NLP tasks, is required.
Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-12
Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-12 with Computers categories.
Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is for This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.
Pytorch Pocket Reference
DOWNLOAD
Author : Joe Papa
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-05-11
Pytorch Pocket Reference written by Joe Papa and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-11 with Computers categories.
This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development-from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices. Learn basic PyTorch syntax and design patterns Create custom models and data transforms Train and deploy models using a GPU and TPU Train and test a deep learning classifier Accelerate training using optimization and distributed training Access useful PyTorch libraries and the PyTorch ecosystem
Modern Computer Vision With Pytorch
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-11-27
Modern Computer Vision With Pytorch written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Hands On Generative Adversarial Networks With Pytorch 1 X
DOWNLOAD
Author : John Hany
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12
Hands On Generative Adversarial Networks With Pytorch 1 X written by John Hany and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.
Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key FeaturesImplement GAN architectures to generate images, text, audio, 3D models, and moreUnderstand how GANs work and become an active contributor in the open source communityLearn how to generate photo-realistic images based on text descriptionsBook Description With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learnImplement PyTorch's latest features to ensure efficient model designingGet to grips with the working mechanisms of GAN modelsPerform style transfer between unpaired image collections with CycleGANBuild and train 3D-GANs to generate a point cloud of 3D objectsCreate a range of GAN models to perform various image synthesis operationsUse SEGAN to suppress noise and improve the quality of speech audioWho this book is for This GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You’ll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.
Natural Language Processing With Pytorch
DOWNLOAD
Author : Delip Rao
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-01-22
Natural Language Processing With Pytorch written by Delip Rao and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Computers categories.
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Natural Language Processing
DOWNLOAD
Author : Raymond S. T. Lee
language : en
Publisher: Springer Nature
Release Date : 2023-11-14
Natural Language Processing written by Raymond S. T. Lee and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-14 with Computers categories.
This textbook presents an up-to-date and comprehensive overview of Natural Language Processing (NLP), from basic concepts to core algorithms and key applications. Further, it contains seven step-by-step NLP workshops (total length: 14 hours) offering hands-on practice with essential Python tools like NLTK, spaCy, TensorFlow Kera, Transformer and BERT. The objective of this book is to provide readers with a fundamental grasp of NLP and its core technologies, and to enable them to build their own NLP applications (e.g. Chatbot systems) using Python-based NLP tools. It is both a textbook and NLP tool-book intended for the following readers: undergraduate students from various disciplines who want to learn NLP; lecturers and tutors who want to teach courses or tutorials for undergraduate/graduate students on NLP and related AI topics; and readers with various backgrounds who want to learn NLP, and more importantly, to build workable NLP applications after completing its 14 hours of Python-based workshops.
Pytorch Kompakt
DOWNLOAD
Author : Joe Papa
language : de
Publisher: O'Reilly
Release Date : 2021-12-14
Pytorch Kompakt written by Joe Papa and has been published by O'Reilly this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.
Eine großartige Ressource für alle, die mit PyTorch arbeiten Kurzgefasstes und präzises Wissen zu dem populären Deep-Learning-Framework Sowohl für PyTorch-Einsteiger:innen als auch für Fortgeschrittene nützlich Überblick über Modellentwicklung, Deployment, das PyTorch-Ökosystem und über hilfreiche PyTorch-Bibliotheken Mit Kurzeinstieg in PyTorch Mit diesem benutzerfreundlichen Nachschlagewerk zu PyTorch haben Sie kompaktes Wissen zu einem der beliebtesten Frameworks für Deep Learning immer zur Hand. Der Autor Joe Papa bietet Ihnen mit dieser Referenz den sofortigen Zugriff auf Syntax, Design Patterns und gut nachvollziehbare Codebeispiele - eine Fülle an gesammelten Informationen, die Ihre Entwicklungsarbeit beschleunigen und die Zeit minimieren, die Sie mit der Suche nach Details verbringen. Data Scientists, Softwareentwickler:innen und Machine Learning Engineers finden in diesem Buch klaren, strukturierten PyTorch-Code, der jeden Schritt der Entwicklung neuronaler Netze abdeckt - vom Laden der Daten über die Anpassung von Trainingsschleifen bis hin zur Modelloptimierung und GPU/TPU-Beschleunigung. Lernen Sie in kurzer Zeit, wie Sie Ihren Code mit AWS, Google Cloud oder Azure in der Produktivumgebung einsetzen und Ihre ML-Modelle auf mobilen und Edge-Geräten bereitstellen.
Pytorch Deep Learning Hands On
DOWNLOAD
Author : Sherin Thomas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30
Pytorch Deep Learning Hands On written by Sherin Thomas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.
Transformers For Natural Language Processing
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-01-29
Transformers For Natural Language Processing written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-29 with Computers categories.
Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.