Hardware Accelerator Systems For Artificial Intelligence And Machine Learning

DOWNLOAD
Download Hardware Accelerator Systems For Artificial Intelligence And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hardware Accelerator Systems For Artificial Intelligence And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hardware Accelerator Systems For Artificial Intelligence And Machine Learning
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2021-03-28
Hardware Accelerator Systems For Artificial Intelligence And Machine Learning written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-28 with Mathematics categories.
Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into artificial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance
Efficient Processing Of Deep Neural Networks
DOWNLOAD
Author : Vivienne Sze
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2020-06-24
Efficient Processing Of Deep Neural Networks written by Vivienne Sze and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-24 with Computers categories.
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of the DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as a formalization and organization of key concepts from contemporary works that provides insights that may spark new ideas.
Vlsi And Hardware Implementations Using Modern Machine Learning Methods
DOWNLOAD
Author : Sandeep Saini
language : en
Publisher: CRC Press
Release Date : 2021-12-30
Vlsi And Hardware Implementations Using Modern Machine Learning Methods written by Sandeep Saini and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-30 with Technology & Engineering categories.
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
Hardware Architectures For Deep Learning
DOWNLOAD
Author : Masoud Daneshtalab
language : en
Publisher: Institution of Engineering and Technology
Release Date : 2020-02-28
Hardware Architectures For Deep Learning written by Masoud Daneshtalab and has been published by Institution of Engineering and Technology this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.
This book presents and discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks.
Fpga Based Hardware Accelerators
DOWNLOAD
Author : Iouliia Skliarova
language : en
Publisher: Springer
Release Date : 2019-05-30
Fpga Based Hardware Accelerators written by Iouliia Skliarova and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Technology & Engineering categories.
This book suggests and describes a number of fast parallel circuits for data/vector processing using FPGA-based hardware accelerators. Three primary areas are covered: searching, sorting, and counting in combinational and iterative networks. These include the application of traditional structures that rely on comparators/swappers as well as alternative networks with a variety of core elements such as adders, logical gates, and look-up tables. The iterative technique discussed in the book enables the sequential reuse of relatively large combinational blocks that execute many parallel operations with small propagation delays. For each type of network discussed, the main focus is on the step-by-step development of the architectures proposed from initial concepts to synthesizable hardware description language specifications. Each type of network is taken through several stages, including modeling the desired functionality in software, the retrieval and automatic conversion of key functions, leading to specifications for optimized hardware modules. The resulting specifications are then synthesized, implemented, and tested in FPGAs using commercial design environments and prototyping boards. The methods proposed can be used in a range of data processing applications, including traditional sorting, the extraction of maximum and minimum subsets from large data sets, communication-time data processing, finding frequently occurring items in a set, and Hamming weight/distance counters/comparators. The book is intended to be a valuable support material for university and industrial engineering courses that involve FPGA-based circuit and system design.
Tinyml
DOWNLOAD
Author : Pete Warden
language : en
Publisher: O'Reilly Media
Release Date : 2019-12-16
Tinyml written by Pete Warden and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Learning Deep Learning
DOWNLOAD
Author : Magnus Ekman
language : en
Publisher: Addison-Wesley Professional
Release Date : 2021-07-19
Learning Deep Learning written by Magnus Ekman and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-19 with Computers categories.
NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Practical Deep Learning For Cloud Mobile And Edge
DOWNLOAD
Author : Anirudh Koul
language : en
Publisher: O'Reilly Media
Release Date : 2019-10-14
Practical Deep Learning For Cloud Mobile And Edge written by Anirudh Koul and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.
Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users
Progresses In Artificial Intelligence And Neural Systems
DOWNLOAD
Author : Anna Esposito
language : en
Publisher: Springer Nature
Release Date : 2020-07-09
Progresses In Artificial Intelligence And Neural Systems written by Anna Esposito and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-09 with Technology & Engineering categories.
This book provides an overview of the current advances in artificial intelligence and neural nets. Artificial intelligence (AI) methods have shown great capabilities in modelling, prediction and recognition tasks supporting human–machine interaction. At the same time, the issue of emotion has gained increasing attention due to its relevance in achieving human-like interaction with machines. The real challenge is taking advantage of the emotional characterization of humans’ interactions to make computers interfacing with them emotionally and socially credible. The book assesses how and to what extent current sophisticated computational intelligence tools might support the multidisciplinary research on the characterization of appropriate system reactions to human emotions and expressions in interactive scenarios. Discussing the latest recent research trends, innovative approaches and future challenges in AI from interdisciplinary perspectives, it is a valuable resource for researchers and practitioners in academia and industry.
Learning In Embedded Systems
DOWNLOAD
Author : Leslie Pack Kaelbling
language : en
Publisher: MIT Press
Release Date : 1993
Learning In Embedded Systems written by Leslie Pack Kaelbling and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.
Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics and machine learning. Presenting interesting, new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial and error experience with an external world. The text is a detailed exploration of the problem of learning action strategies in the context of designing embedded systems that adapt their behaviour to a complex, changing environment. Such systems include mobile robots, factory process controllers and long-term software databases.