Harmonic Function Theory

DOWNLOAD
Download Harmonic Function Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Harmonic Function Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Harmonic Function Theory
DOWNLOAD
Author : Sheldon Axler
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Harmonic Function Theory written by Sheldon Axler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
Harmonic Function Theory
DOWNLOAD
Author : Sheldon Axler
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-01-25
Harmonic Function Theory written by Sheldon Axler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-01-25 with Mathematics categories.
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
Positive Harmonic Functions And Diffusion
DOWNLOAD
Author : Ross G. Pinsky
language : en
Publisher: Cambridge University Press
Release Date : 1995-01-12
Positive Harmonic Functions And Diffusion written by Ross G. Pinsky and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-01-12 with Mathematics categories.
In this book, Professor Pinsky gives a self-contained account of the theory of positive harmonic functions for second order elliptic operators, using an integrated probabilistic and analytic approach. The book begins with a treatment of the construction and basic properties of diffusion processes. This theory then serves as a vehicle for studying positive harmonic funtions. Starting with a rigorous treatment of the spectral theory of elliptic operators with nice coefficients on smooth, bounded domains, the author then develops the theory of the generalized principal eigenvalue, and the related criticality theory for elliptic operators on arbitrary domains. Martin boundary theory is considered, and the Martin boundary is explicitly calculated for several classes of operators. The book provides an array of criteria for determining whether a diffusion process is transient or recurrent. Also introduced are the theory of bounded harmonic functions, and Brownian motion on manifolds of negative curvature. Many results that form the folklore of the subject are here given a rigorous exposition, making this book a useful reference for the specialist, and an excellent guide for the graduate student.
Potential Theory On Harmonic Spaces
DOWNLOAD
Author : Corneliu Constantinescu
language : en
Publisher: Springer
Release Date : 1972-12-05
Potential Theory On Harmonic Spaces written by Corneliu Constantinescu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1972-12-05 with Mathematics categories.
There has been a considerable revival of interest in potential theory during the last 20 years. This is made evident by the appearance of new mathematical disciplines in that period which now-a-days are considered as parts of potential theory. Examples of such disciplines are: the theory of Choquet capacities, of Dirichlet spaces, of martingales and Markov processes, of integral representation in convex compact sets as well as the theory of harmonic spaces. All these theories have roots in classical potential theory. The theory of harmonic spaces, sometimes also called axiomatic theory of harmonic functions, plays a particular role among the above mentioned theories. On the one hand, this theory has particularly close connections with classical potential theory. Its main notion is that of a harmonic function and its main aim is the generalization and unification of classical results and methods for application to an extended class of elliptic and parabolic second order partial differential equations. On the other hand, the theory of harmonic spaces is closely related to the theory of Markov processes. In fact, all important notions and results of the theory have a probabilistic interpretation.
Harmonic Functions On Groups And Fourier Algebras
DOWNLOAD
Author : Cho-Ho Chu
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-05-27
Harmonic Functions On Groups And Fourier Algebras written by Cho-Ho Chu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-05-27 with Mathematics categories.
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Function Theory Of Several Complex Variables
DOWNLOAD
Author : Steven George Krantz
language : en
Publisher: American Mathematical Soc.
Release Date : 2001
Function Theory Of Several Complex Variables written by Steven George Krantz and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Approximation Theory And Harmonic Analysis On Spheres And Balls
DOWNLOAD
Author : Feng Dai
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Approximation Theory And Harmonic Analysis On Spheres And Balls written by Feng Dai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Harmonic Analysis On Semigroups
DOWNLOAD
Author : C. van den Berg
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Harmonic Analysis On Semigroups written by C. van den Berg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The Fourier transform and the Laplace transform of a positive measure share, together with its moment sequence, a positive definiteness property which under certain regularity assumptions is characteristic for such expressions. This is formulated in exact terms in the famous theorems of Bochner, Bernstein-Widder and Hamburger. All three theorems can be viewed as special cases of a general theorem about functions qJ on abelian semigroups with involution (S, +, *) which are positive definite in the sense that the matrix (qJ(sJ + Sk» is positive definite for all finite choices of elements St, . . . , Sn from S. The three basic results mentioned above correspond to (~, +, x* = -x), ([0, 00[, +, x* = x) and (No, +, n* = n). The purpose of this book is to provide a treatment of these positive definite functions on abelian semigroups with involution. In doing so we also discuss related topics such as negative definite functions, completely mono tone functions and Hoeffding-type inequalities. We view these subjects as important ingredients of harmonic analysis on semigroups. It has been our aim, simultaneously, to write a book which can serve as a textbook for an advanced graduate course, because we feel that the notion of positive definiteness is an important and basic notion which occurs in mathematics as often as the notion of a Hilbert space.
Harmonic Functions And Potentials On Finite Or Infinite Networks
DOWNLOAD
Author : Victor Anandam
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-27
Harmonic Functions And Potentials On Finite Or Infinite Networks written by Victor Anandam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-27 with Mathematics categories.
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.
Harmonic Analysis Of Spherical Functions On Real Reductive Groups
DOWNLOAD
Author : Ramesh Gangolli
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Harmonic Analysis Of Spherical Functions On Real Reductive Groups written by Ramesh Gangolli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.