[PDF] Heterogeneous Graph Representation Learning And Applications - eBooks Review

Heterogeneous Graph Representation Learning And Applications


Heterogeneous Graph Representation Learning And Applications
DOWNLOAD

Download Heterogeneous Graph Representation Learning And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Heterogeneous Graph Representation Learning And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Heterogeneous Graph Representation Learning And Applications


Heterogeneous Graph Representation Learning And Applications
DOWNLOAD
Author : Chuan Shi
language : en
Publisher: Springer Nature
Release Date : 2022-01-30

Heterogeneous Graph Representation Learning And Applications written by Chuan Shi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-30 with Computers categories.


Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.



Graph Neural Networks Foundations Frontiers And Applications


Graph Neural Networks Foundations Frontiers And Applications
DOWNLOAD
Author : Lingfei Wu
language : en
Publisher: Springer Nature
Release Date : 2022-01-03

Graph Neural Networks Foundations Frontiers And Applications written by Lingfei Wu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-03 with Computers categories.


Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.



Graph Representation Learning


Graph Representation Learning
DOWNLOAD
Author : William L. Hamilton
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Graph Representation Learning written by William L. Hamilton and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.



Deep Learning On Graphs


Deep Learning On Graphs
DOWNLOAD
Author : Yao Ma
language : en
Publisher: Cambridge University Press
Release Date : 2021-09-23

Deep Learning On Graphs written by Yao Ma and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-23 with Computers categories.


A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.



Mining Heterogeneous Information Networks


Mining Heterogeneous Information Networks
DOWNLOAD
Author : Yizhou Sun
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2012

Mining Heterogeneous Information Networks written by Yizhou Sun and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


Investigates the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, the semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network.



Representation Learning For Natural Language Processing


Representation Learning For Natural Language Processing
DOWNLOAD
Author : Zhiyuan Liu
language : en
Publisher: Springer Nature
Release Date : 2023-08-23

Representation Learning For Natural Language Processing written by Zhiyuan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-23 with Computers categories.


This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.



Pricai 2023 Trends In Artificial Intelligence


Pricai 2023 Trends In Artificial Intelligence
DOWNLOAD
Author : Fenrong Liu
language : en
Publisher: Springer Nature
Release Date : 2023-11-10

Pricai 2023 Trends In Artificial Intelligence written by Fenrong Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-10 with Computers categories.


This three-volume set, LNCS 14325-14327 constitutes the thoroughly refereed proceedings of the 20th Pacific Rim Conference on Artificial Intelligence, PRICAI 2023, held in Jakarta, Indonesia, in November 2023. The 95 full papers and 36 short papers presented in these volumes were carefully reviewed and selected from 422 submissions. PRICAI covers a wide range of topics in the areas of social and economic importance for countries in the Pacific Rim: artificial intelligence, machine learning, natural language processing, knowledge representation and reasoning, planning and scheduling, computer vision, distributed artificial intelligence, search methodologies, etc.



Blockchain And Web3 0 Technology Innovation And Application


Blockchain And Web3 0 Technology Innovation And Application
DOWNLOAD
Author : Gansen Zhao
language : en
Publisher: Springer Nature
Release Date : 2024-11-02

Blockchain And Web3 0 Technology Innovation And Application written by Gansen Zhao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-02 with Computers categories.


This book constitutes the refereed proceedings of the First Conference on Blockchain and Web3 Technology Innovation and Application, BWTAC 2024, held in Guangzhou, China, during, November 6–8, 2024. The 36 full papers and 9 short papers included in this book were carefully reviewed and selected from 106 submissions. They were categorized in the following topica sections: Architectures and Technologies, Privacy Protection and Data Security, Artificial Intelligences, Security, Trading Systems, Cross Domains Applications and Emerging Technologies.



Advanced Intelligent Computing Technology And Applications


Advanced Intelligent Computing Technology And Applications
DOWNLOAD
Author : De-Shuang Huang
language : en
Publisher: Springer Nature
Release Date : 2024-08-01

Advanced Intelligent Computing Technology And Applications written by De-Shuang Huang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-01 with Computers categories.


This 13-volume set LNCS 14862-14874 constitutes - in conjunction with the 6-volume set LNAI 14875-14880 and the two-volume set LNBI 14881-14882 - the refereed proceedings of the 20th International Conference on Intelligent Computing, ICIC 2024, held in Tianjin, China, during August 5-8, 2024. The total of 863 regular papers were carefully reviewed and selected from 2189 submissions. This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was "Advanced Intelligent Computing Technology and Applications". Papers that focused on this theme were solicited, addressing theories, methodologies, and applications in science and technology.



Bioinformatics Research And Applications


Bioinformatics Research And Applications
DOWNLOAD
Author : Wei Peng
language : en
Publisher: Springer Nature
Release Date : 2024-07-11

Bioinformatics Research And Applications written by Wei Peng and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-11 with Computers categories.


This book constitutes the refereed proceedings of the 20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024, held in Kunming, China, in July 19–21, 2024. The 93 full papers included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications.