Hierarchical Modelling Of Discrete Longitudinal Data

DOWNLOAD
Download Hierarchical Modelling Of Discrete Longitudinal Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hierarchical Modelling Of Discrete Longitudinal Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Models For Discrete Longitudinal Data
DOWNLOAD
Author : Geert Molenberghs
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-08-30
Models For Discrete Longitudinal Data written by Geert Molenberghs and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-30 with Mathematics categories.
The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
Hierarchical Modelling Of Discrete Longitudinal Data
DOWNLOAD
Author : Leonhard Held
language : en
Publisher: Herbert Utz Verlag
Release Date : 1997
Hierarchical Modelling Of Discrete Longitudinal Data written by Leonhard Held and has been published by Herbert Utz Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Longitudinal method categories.
Bayesian Hierarchical Models
DOWNLOAD
Author : Peter D. Congdon
language : en
Publisher: CRC Press
Release Date : 2019-09-16
Bayesian Hierarchical Models written by Peter D. Congdon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-16 with Mathematics categories.
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Modeling Longitudinal Data
DOWNLOAD
Author : Robert E. Weiss
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-12-06
Modeling Longitudinal Data written by Robert E. Weiss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-06 with Medical categories.
Longitudinal data are ubiquitous across Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education, yet many longitudinal data sets remain improperly analyzed. This book teaches the art and statistical science of modern longitudinal data analysis. The author emphasizes specifying, understanding, and interpreting longitudinal data models. He inspects the longitudinal data graphically, analyzes the time trend and covariates, models the covariance matrix, and then draws conclusions. Covariance models covered include random effects, autoregressive, autoregressive moving average, antedependence, factor analytic, and completely unstructured models among others. Longer expositions explore: an introduction to and critique of simple non-longitudinal analyses of longitudinal data, missing data concepts, diagnostics, and simultaneous modeling of two longitudinal variables. Applications and issues for random effects models cover estimation, shrinkage, clustered data, models for binary and count data and residuals and residual plots. Shorter sections include a general discussion of how computational algorithms work, handling transformed data, and basic design issues. This book requires a solid regression course as background and is particularly intended for the final year of a Biostatistics or Statistics Masters degree curriculum. The mathematical prerequisite is generally low, mainly assuming familiarity with regression analysis in matrix form. Doctoral students in Biostatistics or Statistics, applied researchers and quantitative doctoral students in disciplines such as Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education will find this book invaluable. The book has many figures and tables illustrating longitudinal data and numerous homework problems. The associated web site contains many longitudinal data sets, examples of computer code, and labs to re-enforce thematerial. From the reviews: "...This book is extremely well presented and it has been written in a style that makes its reading really pleasant and enjoyable...I highly recommend Modeling Longitudinal Data as a good reference book for anyone interested in looking into the art and statistical science of modern longitudinal data analysis." Journal of Applied Statistics, December 2005 "The book is clearly written and well presented. The author's accumulated experience in presenting the material comes over. On balance, this is one of the books which anyone about to teach a practical course in longitudinal data analysis should consider adopting as the course text." Short Book Reviews of the ISI, June 2006 "...Modeling Longitudinal Data is a welcome addition to the vast literature on longitudinal data analysis. The book requires little in terms of prerequisites but offers a great deal." Zhigang Zhang for the Journal of the American Statistical Association, December 2006 "Overall, Robert Weiss's book can be used as an excellent textbook for a first master-level course in longitudinal data analysis in a statistics or biostatistics program, or as a self-study book for applied researchers interested in this area...The style is very clear, concepts are explained in an engaging way and amply illustrated, and the chapters on covariate selection and modeling the variance-covariance matrix are definite assets." Ralitza Gueorgueiva for Biostatistics, September 2006
Dynamic Mixed Models For Familial Longitudinal Data
DOWNLOAD
Author : Brajendra C. Sutradhar
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-01-27
Dynamic Mixed Models For Familial Longitudinal Data written by Brajendra C. Sutradhar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-27 with Mathematics categories.
This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of independent families by using the class of auto-correlation structures conditional on the random effects. The book also provides models and inferences for discrete longitudinal data in the adaptive clinical trial set up. The book is mathematically rigorous and provides details for the development of estimation approaches under selected familial and longitudinal models. Further, while the book provides special cares for mathematics behind the correlation models, it also presents the illustrations of the statistical analysis of various real life data. This book will be of interest to the researchers including graduate students in biostatistics and econometrics, among other applied statistics research areas. Brajendra Sutradhar is a University ResearchProfessor at Memorial University in St. John’s, Canada. He is an elected member of the International Statistical Institute and a fellow of the American Statistical Association. He has published about 110 papers in statistics journals in the area of multivariate analysis, time series analysis including forecasting, sampling, survival analysis for correlated failure times, robust inferences in generalized linear mixed models with outliers, and generalized linear longitudinal mixed models with bio-statistical and econometric applications. He has served as an associate editor for six years for Canadian Journal of Statistics and for four years for the Journal of Environmental and Ecological Statistics. He has served for 3 years as a member of the advisory committee on statistical methods in Statistics Canada. Professor Sutradhar was awarded 2007 distinguished service award of Statistics Society of Canada for his many years of services to the society including his special services for society’s annual meetings.
Markov Chain Monte Carlo
DOWNLOAD
Author : Dani Gamerman
language : en
Publisher: CRC Press
Release Date : 1997-10-01
Markov Chain Monte Carlo written by Dani Gamerman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-01 with Mathematics categories.
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Multivariate Statistical Modelling Based On Generalized Linear Models
DOWNLOAD
Author : Ludwig Fahrmeir
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Multivariate Statistical Modelling Based On Generalized Linear Models written by Ludwig Fahrmeir and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
Since our first edition of this book, many developments in statistical mod elling based on generalized linear models have been published, and our primary aim is to bring the book up to date. Naturally, the choice of these recent developments reflects our own teaching and research interests. The new organization parallels that of the first edition. We try to motiv ate and illustrate concepts with examples using real data, and most data sets are available on http:/ fwww. stat. uni-muenchen. de/welcome_e. html, with a link to data archive. We could not treat all recent developments in the main text, and in such cases we point to references at the end of each chapter. Many changes will be found in several sections, especially with those connected to Bayesian concepts. For example, the treatment of marginal models in Chapter 3 is now current and state-of-the-art. The coverage of nonparametric and semiparametric generalized regression in Chapter 5 is completely rewritten with a shift of emphasis to linear bases, as well as new sections on local smoothing approaches and Bayesian inference. Chapter 6 now incorporates developments in parametric modelling of both time series and longitudinal data. Additionally, random effect models in Chapter 7 now cover nonparametric maximum likelihood and a new section on fully Bayesian approaches. The modifications and extensions in Chapter 8 reflect the rapid development in state space and hidden Markov models.
Longitudinal Data Analysis
DOWNLOAD
Author : Garrett Fitzmaurice
language : en
Publisher: CRC Press
Release Date : 2008-08-11
Longitudinal Data Analysis written by Garrett Fitzmaurice and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-11 with Mathematics categories.
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Explanatory Item Response Models
DOWNLOAD
Author : Paul de Boeck
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Explanatory Item Response Models written by Paul de Boeck and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Social Science categories.
This edited volume gives a new and integrated introduction to item re sponse models (predominantly used in measurement applications in psy chology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. Moreover, this new framework aHows the domain of item response mod els to be co-ordinated and broadened to emphasize their explanatory uses beyond their standard descriptive uses. The basic explanatory principle is that item responses can be modeled as a function of predictors of various kinds. The predictors can be (a) char acteristics of items, of persons, and of combinations of persons and items; they can be (b) observed or latent (of either items or persons); and they can be (c) latent continuous or latent categorical. Thus, a broad range of models can be generated, including a wide range of extant item response models as weH as some new ones. Within this range, models with explana tory predictors are given special attention, but we also discuss descriptive models. Note that the 'item responses' that we are referring to are not just the traditional 'test data,' but are broadly conceived as categorical data from a repeated observations design. Hence, data from studies with repeated-observations experimental designs, or with longitudinal designs, mayaIso be modeled. The intended audience for this volume is rather broad.
Bayesian Analysis For The Social Sciences
DOWNLOAD
Author : Simon Jackman
language : en
Publisher: John Wiley & Sons
Release Date : 2009-10-27
Bayesian Analysis For The Social Sciences written by Simon Jackman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-27 with Mathematics categories.
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.