[PDF] High Dimensional Optimization And Probability - eBooks Review

High Dimensional Optimization And Probability


High Dimensional Optimization And Probability
DOWNLOAD

Download High Dimensional Optimization And Probability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Dimensional Optimization And Probability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bayesian And High Dimensional Global Optimization


Bayesian And High Dimensional Global Optimization
DOWNLOAD
Author : Anatoly Zhigljavsky
language : en
Publisher: Springer Nature
Release Date : 2021-03-02

Bayesian And High Dimensional Global Optimization written by Anatoly Zhigljavsky and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-02 with Mathematics categories.


Accessible to a variety of readers, this book is of interest to specialists, graduate students and researchers in mathematics, optimization, computer science, operations research, management science, engineering and other applied areas interested in solving optimization problems. Basic principles, potential and boundaries of applicability of stochastic global optimization techniques are examined in this book. A variety of issues that face specialists in global optimization are explored, such as multidimensional spaces which are frequently ignored by researchers. The importance of precise interpretation of the mathematical results in assessments of optimization methods is demonstrated through examples of convergence in probability of random search. Methodological issues concerning construction and applicability of stochastic global optimization methods are discussed, including the one-step optimal average improvement method based on a statistical model of the objective function. A significant portion of this book is devoted to an analysis of high-dimensional global optimization problems and the so-called ‘curse of dimensionality’. An examination of the three different classes of high-dimensional optimization problems, the geometry of high-dimensional balls and cubes, very slow convergence of global random search algorithms in large-dimensional problems , and poor uniformity of the uniformly distributed sequences of points are included in this book.



High Dimensional Optimization And Probability


High Dimensional Optimization And Probability
DOWNLOAD
Author : Ashkan Nikeghbali
language : en
Publisher: Springer Nature
Release Date : 2022-08-04

High Dimensional Optimization And Probability written by Ashkan Nikeghbali and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-04 with Mathematics categories.


This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



High Dimensional Statistics


High Dimensional Statistics
DOWNLOAD
Author : Martin J. Wainwright
language : en
Publisher: Cambridge University Press
Release Date : 2019-02-21

High Dimensional Statistics written by Martin J. Wainwright and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Business & Economics categories.


A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.



Analysis Of Multivariate And High Dimensional Data


Analysis Of Multivariate And High Dimensional Data
DOWNLOAD
Author : Inge Koch
language : en
Publisher: Cambridge University Press
Release Date : 2014

Analysis Of Multivariate And High Dimensional Data written by Inge Koch and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Business & Economics categories.


This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.



Introduction To High Dimensional Statistics


Introduction To High Dimensional Statistics
DOWNLOAD
Author : Christophe Giraud
language : en
Publisher: CRC Press
Release Date : 2021-08-25

Introduction To High Dimensional Statistics written by Christophe Giraud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-25 with Business & Economics categories.


Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.



High Dimensional Optimization And Probability


High Dimensional Optimization And Probability
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2022

High Dimensional Optimization And Probability written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Mathematical optimization categories.


This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



High Dimensional Optimization


High Dimensional Optimization
DOWNLOAD
Author : Jack Noonan
language : en
Publisher: Springer Nature
Release Date : 2024-05-31

High Dimensional Optimization written by Jack Noonan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-31 with Mathematics categories.


This book is interdisciplinary and unites several areas of applied probability, statistics, and computational mathematics including computer experiments, optimal experimental design, and global optimization. The bulk of the book is based on several recent papers by the authors but also contains new results. Considering applications, this brief highlights multistart and other methods of global optimizations requiring efficient exploration of the domain of optimization. This book is accessible to a wide range of readers; the prerequisites for reading the book are rather low, and many numerical examples are provided that pictorially illustrate the main ideas, methods, and conclusions. The main purpose of this book is the construction of efficient exploration strategies of high-dimensional sets. In high dimensions, the asymptotic arguments could be practically misleading and hence the emphasis on the non-asymptotic regime. An important link with global optimization stems from the observation that approximate covering is one of the key concepts associated with multistart and other key random search algorithms. In addition to global optimization, important applications of the results are computer experiments and machine learning. It is demonstrated that the asymptotically optimal space-filling designs, such as pure random sampling or low-discrepancy point nets, could be rather inefficient in the non-asymptotic regime and the authors suggest ways of increasing the efficiency of such designs. The range of techniques ranges from experimental design, Monte Carlo, and asymptotic expansions in the central limit theorem to multivariate geometry, theory of lattices, and numerical integration. This book could be useful to a wide circle of readers, especially those specializing in global optimization, numerical analysis, computer experiments, and computational mathematics. As specific recipes for improving set exploration schemes are formulated, the book can also be used by the practitioners interested in applications only.



High Dimensional Data Analysis With Low Dimensional Models


High Dimensional Data Analysis With Low Dimensional Models
DOWNLOAD
Author : John Wright
language : en
Publisher: Cambridge University Press
Release Date : 2022-01-13

High Dimensional Data Analysis With Low Dimensional Models written by John Wright and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-13 with Computers categories.


Connects fundamental mathematical theory with real-world problems, through efficient and scalable optimization algorithms.



Mm Optimization Algorithms


Mm Optimization Algorithms
DOWNLOAD
Author : Kenneth Lange
language : en
Publisher: SIAM
Release Date : 2016-07-11

Mm Optimization Algorithms written by Kenneth Lange and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-11 with Mathematics categories.


MM Optimization Algorithms offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem. The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.



Approximate Dynamic Programming


Approximate Dynamic Programming
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2007-10-05

Approximate Dynamic Programming written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-05 with Mathematics categories.


A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.