[PDF] High Performance Python - eBooks Review

High Performance Python


High Performance Python
DOWNLOAD

Download High Performance Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Performance Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



High Performance Python


High Performance Python
DOWNLOAD
Author : Micha Gorelick
language : en
Publisher: O'Reilly Media
Release Date : 2020-04-30

High Performance Python written by Micha Gorelick and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-30 with Computers categories.


Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker



High Performance Python


High Performance Python
DOWNLOAD
Author : Micha Gorelick
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-08-22

High Performance Python written by Micha Gorelick and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-22 with Computers categories.


Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python’s implementation. You’ll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations. Get a better grasp of numpy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on a local or remote cluster Solve large problems while using less RAM



Mastering Python High Performance


Mastering Python High Performance
DOWNLOAD
Author : Fernando Doglio
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-09

Mastering Python High Performance written by Fernando Doglio and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-09 with Computers categories.


Measure, optimize, and improve the performance of your Python code with this easy-to-follow guide About This Book Master the do's and don'ts of Python performance programming Learn how to use exiting new tools that will help you improve your scripts A step-by-step, conceptual guide to teach you how to optimize and fine-tune your critical pieces of code Who This Book Is For If you're a Python developer looking to improve the speed of your scripts or simply wanting to take your skills to the next level, then this book is perfect for you. What You Will Learn Master code optimization step-by-step and learn how to use different tools Understand what a profiler is and how to read its output Interpret visual output from profiling tools and improve the performance of your script Use Cython to create fast applications using Python and C Take advantage of PyPy to improve performance of Python code Optimize number-crunching code with NumPy, Numba, Parakeet, and Pandas In Detail Simply knowing how to code is not enough; on mission-critical pieces of code, every bit of memory and every CPU cycle counts, and knowing how to squish every bit of processing power out of your code is a crucial and sought-after skill. Nowadays, Python is used for many scientific projects, and sometimes the calculations done in those projects require some serious fine-tuning. Profilers are tools designed to help you measure the performance of your code and help you during the optimization process, so knowing how to use them and read their output is very handy. This book starts from the basics and progressively moves on to more advanced topics. You'll learn everything from profiling all the way up to writing a real-life application and applying a full set of tools designed to improve it in different ways. In the middle, you'll stop to learn about the major profilers used in Python and about some graphic tools to help you make sense of their output. You'll then move from generic optimization techniques onto Python-specific ones, going over the main constructs of the language that will help you improve your speed without much of a change. Finally, the book covers some number-crunching-specific libraries and how to use them properly to get the best speed out of them. After reading this book, you will know how to take any Python code, profile it, find out where the bottlenecks are, and apply different techniques to remove them. Style and approach This easy-to-follow, practical guide will help you enhance your optimization skills by improving real-world code.



Using Asyncio In Python


Using Asyncio In Python
DOWNLOAD
Author : Caleb Hattingh
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-01-30

Using Asyncio In Python written by Caleb Hattingh and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Computers categories.


If you’re among the Python developers put off by asyncio’s complexity, it’s time to take another look. Asyncio is complicated because it aims to solve problems in concurrent network programming for both framework and end-user developers. The features you need to consider are a small subset of the whole asyncio API, but picking out the right features is the tricky part. That’s where this practical book comes in. Veteran Python developer Caleb Hattingh helps you gain a basic understanding of asyncio’s building blocks—enough to get started writing simple event-based programs. You’ll learn why asyncio offers a safer alternative to preemptive multitasking (threading) and how this API provides a simpleway to support thousands of simultaneous socket connections. Get a critical comparison of asyncio and threading for concurrent network programming Take an asyncio walk-through, including a quickstart guidefor hitting the ground looping with event-based programming Learn the difference between asyncio features for end-user developers and those for framework developers Understand asyncio’s new async/await language syntax, including coroutines and task and future APIs Get detailed case studies (with code) of some popular asyncio-compatible third-party libraries



High Performance Python


High Performance Python
DOWNLOAD
Author : Micha Gorelick
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-04-30

High Performance Python written by Micha Gorelick and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-30 with Computers categories.


Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker



Hands On Gpu Programming With Python And Cuda


Hands On Gpu Programming With Python And Cuda
DOWNLOAD
Author : Dr. Brian Tuomanen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-27

Hands On Gpu Programming With Python And Cuda written by Dr. Brian Tuomanen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-27 with Computers categories.


Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book. Key FeaturesExpand your background in GPU programming—PyCUDA, scikit-cuda, and NsightEffectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolverApply GPU programming to modern data science applicationsBook Description Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing. What you will learnLaunch GPU code directly from PythonWrite effective and efficient GPU kernels and device functionsUse libraries such as cuFFT, cuBLAS, and cuSolverDebug and profile your code with Nsight and Visual ProfilerApply GPU programming to datascience problemsBuild a GPU-based deep neuralnetwork from scratchExplore advanced GPU hardware features, such as warp shufflingWho this book is for Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.



Introduction To High Performance Computing For Scientists And Engineers


Introduction To High Performance Computing For Scientists And Engineers
DOWNLOAD
Author : Georg Hager
language : en
Publisher: CRC Press
Release Date : 2010-07-02

Introduction To High Performance Computing For Scientists And Engineers written by Georg Hager and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-02 with Computers categories.


Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author



Python Data Science Handbook


Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21

Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms



High Performance Web Sites


High Performance Web Sites
DOWNLOAD
Author : Steve Souders
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2007-09-11

High Performance Web Sites written by Steve Souders and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-11 with Computers categories.


Want your web site to display more quickly? This book presents 14 specific rules that will cut 25% to 50% off response time when users request a page. Author Steve Souders, in his job as Chief Performance Yahoo!, collected these best practices while optimizing some of the most-visited pages on the Web. Even sites that had already been highly optimized, such as Yahoo! Search and the Yahoo! Front Page, were able to benefit from these surprisingly simple performance guidelines. The rules in High Performance Web Sites explain how you can optimize the performance of the Ajax, CSS, JavaScript, Flash, and images that you've already built into your site -- adjustments that are critical for any rich web application. Other sources of information pay a lot of attention to tuning web servers, databases, and hardware, but the bulk of display time is taken up on the browser side and by the communication between server and browser. High Performance Web Sites covers every aspect of that process. Each performance rule is supported by specific examples, and code snippets are available on the book's companion web site. The rules include how to: Make Fewer HTTP Requests Use a Content Delivery Network Add an Expires Header Gzip Components Put Stylesheets at the Top Put Scripts at the Bottom Avoid CSS Expressions Make JavaScript and CSS External Reduce DNS Lookups Minify JavaScript Avoid Redirects Remove Duplicates Scripts Configure ETags Make Ajax Cacheable If you're building pages for high traffic destinations and want to optimize the experience of users visiting your site, this book is indispensable. "If everyone would implement just 20% of Steve's guidelines, the Web would be adramatically better place. Between this book and Steve's YSlow extension, there's reallyno excuse for having a sluggish web site anymore." -Joe Hewitt, Developer of Firebug debugger and Mozilla's DOM Inspector "Steve Souders has done a fantastic job of distilling a massive, semi-arcane art down to a set of concise, actionable, pragmatic engineering steps that will change the world of web performance." -Eric Lawrence, Developer of the Fiddler Web Debugger, Microsoft Corporation



Parallel And High Performance Computing


Parallel And High Performance Computing
DOWNLOAD
Author : Robert Robey
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-24

Parallel And High Performance Computing written by Robert Robey and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.


Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code