[PDF] Hilbert Modular Forms Mod P And P Adic Aspects - eBooks Review

Hilbert Modular Forms Mod P And P Adic Aspects


Hilbert Modular Forms Mod P And P Adic Aspects
DOWNLOAD

Download Hilbert Modular Forms Mod P And P Adic Aspects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hilbert Modular Forms Mod P And P Adic Aspects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hilbert Modular Forms Mod P And P Adic Aspects


Hilbert Modular Forms Mod P And P Adic Aspects
DOWNLOAD
Author : Fabrizio Andreatta
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Hilbert Modular Forms Mod P And P Adic Aspects written by Fabrizio Andreatta and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.



P Adic Aspects Of Modular Forms


P Adic Aspects Of Modular Forms
DOWNLOAD
Author : Baskar Balasubramanyam
language : en
Publisher: World Scientific
Release Date : 2016-06-14

P Adic Aspects Of Modular Forms written by Baskar Balasubramanyam and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-14 with Mathematics categories.


The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).



Hilbert Modular Forms And Iwasawa Theory


Hilbert Modular Forms And Iwasawa Theory
DOWNLOAD
Author : Haruzo Hida
language : en
Publisher: Clarendon Press
Release Date : 2006-06-15

Hilbert Modular Forms And Iwasawa Theory written by Haruzo Hida and has been published by Clarendon Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-15 with Mathematics categories.


The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, authored by a leading researcher, describes the striking applications that have been found for this technique. In the book, the deformation theoretic techniques of Wiles-Taylor are first generalized to Hilbert modular forms (following Fujiwara's treatment), and some applications found by the author are then discussed. With many exercises and open questions given, this text is ideal for researchers and graduate students entering this research area.



Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro


Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro
DOWNLOAD
Author : James W. Cogdell
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-04-01

Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro written by James W. Cogdell and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-01 with Mathematics categories.


This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promise for future development: functoriality and converse theorems; local and global -functions and their periods; -adic -functions and arithmetic geometry; complex geometry; and analytic number theory. In each area, there were talks to review the current state of affairs with special attention to Piatetski-Shapiro's contributions, and other talks to report on current work and to outline promising avenues for continued progress. The contents of this volume reflect most of the talks that were presented at the conference as well as a few additional contributions. They all represent various aspects of the legacy of Piatetski-Shapiro.



Geometric Aspects Of Dwork Theory


Geometric Aspects Of Dwork Theory
DOWNLOAD
Author : Alan Adolphson
language : en
Publisher: Walter de Gruyter
Release Date : 2008-08-22

Geometric Aspects Of Dwork Theory written by Alan Adolphson and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-22 with Mathematics categories.


This two-volume book collects the lectures given during the three months cycle of lectures held in Northern Italy between May and July of 2001 to commemorate Professor Bernard Dwork (1923 - 1998). It presents a wide-ranging overview of some of the most active areas of contemporary research in arithmetic algebraic geometry, with special emphasis on the geometric applications of the p-adic analytic techniques originating in Dwork's work, their connection to various recent cohomology theories and to modular forms. The two volumes contain both important new research and illuminating survey articles written by leading experts in the field. The book will provide an indispensable resource for all those wishing to approach the frontiers of research in arithmetic algebraic geometry.



Flat Level Set Regularity Of P Laplace Phase Transitions


Flat Level Set Regularity Of P Laplace Phase Transitions
DOWNLOAD
Author : Enrico Valdinoci
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

Flat Level Set Regularity Of P Laplace Phase Transitions written by Enrico Valdinoci and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.



The Calculus Of One Sided M Ideals And Multipliers In Operator Spaces


The Calculus Of One Sided M Ideals And Multipliers In Operator Spaces
DOWNLOAD
Author : David P. Blecher
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

The Calculus Of One Sided M Ideals And Multipliers In Operator Spaces written by David P. Blecher and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.



An Algebraic Structure For Moufang Quadrangles


An Algebraic Structure For Moufang Quadrangles
DOWNLOAD
Author : Tom de Medts
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

An Algebraic Structure For Moufang Quadrangles written by Tom de Medts and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


Features an article that intends to present a uniform algebraic structure for Moufang quadrangles, and to classify these structures without referring back to the original Moufang quadrangles from which they arise, thereby also giving a new proof for the classification of Moufang quadrangles, which does consist of the division into these 2 parts.



Moduli Spaces Of Polynomials In Two Variables


Moduli Spaces Of Polynomials In Two Variables
DOWNLOAD
Author : Javier Fernández de Bobadilla
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Moduli Spaces Of Polynomials In Two Variables written by Javier Fernández de Bobadilla and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph



Conformal And Harmonic Measures On Laminations Associated With Rational Maps


Conformal And Harmonic Measures On Laminations Associated With Rational Maps
DOWNLOAD
Author : Vadim A. Kaimanovich
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Conformal And Harmonic Measures On Laminations Associated With Rational Maps written by Vadim A. Kaimanovich and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse ``conformal streams'' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the ``Anosov--Sinai cocycle'', the corresponding ``basic cohomology class'' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$. A number of related geometric objects on laminations -- in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion -- are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97]. Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).