[PDF] Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency - eBooks Review

Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency


Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency
DOWNLOAD

Download Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency


Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency
DOWNLOAD
Author : Xin Zhang
language : en
Publisher: Springer Nature
Release Date : 2023-03-06

Holistic Design Of Resonant Dc Transformer On Constant Voltage Conversion Cascaded Stability And High Efficiency written by Xin Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-06 with Technology & Engineering categories.


This book is devoted to the optimum design of the DCT in a hybrid AC/DC microgrid, which takes into account not only the influence of different inductors/capacitors values, but also numerous design goals (i.e., VCG, efficiency, stability and so on). This book examines the DCT's design problem in detail. It begins by reviewing existing DCTs in, the hybrid AC/DC microgrid and their design problems. Following that, this book proposes a family of DCT optimization design approaches to ensure that the designed DCT has good power transmission and voltage regulation ability in the hybrid AC/DC microgrid, even when the actual inductors/capacitors values fluctuate with practical power and temperature. Following that, this book provides a family of multi-objective optimization design methodologies for the DCT to guarantee that it concurrently achieves the requirements of VCG, efficiency, and system stability. This book also covers how to control the DCT in a hybrid AC/DC microgrid optimally and generically.



Analysis And Design Optimization Of Resonant Dc Dc Converters


Analysis And Design Optimization Of Resonant Dc Dc Converters
DOWNLOAD
Author : Xiang Fang
language : en
Publisher:
Release Date : 2012

Analysis And Design Optimization Of Resonant Dc Dc Converters written by Xiang Fang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


The development in power conversion technology is in constant demand of high power efficiency and high power density. The DC-DC power conversion is an indispensable stage for numerous power supplies and energy related applications. Particularly, in PV micro-inverters and front-end converter of power supplies, great challenges are imposed on the power performances of the DC-DC converter stage, which not only require high efficiency and density but also the capability to regulate a wide variation range of input voltage and load conditions. The resonant DC-DC converters are good candidates to meet these challenges with the advantages of achieving soft switching and low EMI. Among various resonant converter topologies, the LLC converter is very attractive for its wide gain range and providing ZVS for switches from full load to zero load condition. The operation of the LLC converter is complicated due to its multiple resonant stage mechanism. A literature review of different analysis methods are presented, and it shows that the study on the LLC is still incomplete. Therefore, an operation mode analysis method is proposed, which divides the operation into six major modes based on the occurrence of resonant stages. The resonant currents, voltages and the DC gain characteristics for each mode is investigated. To obtain a thorough view of the converter behavior, the boundaries of every mode are studied, and mode distribution regarding the gain, load and frequency is presented and discussed. As this operation mode model is a precise model, an experimental prototype is designed and built to demonstrate its accuracy in operation waveforms and gain prediction. Since most of the LLC modes have no closed-form solutions, simplification is necessary in order to utilize this mode model in practical design. Some prior approximation methods for converter's gain characteristics are discussed. Instead of getting an entire gain-vs.-frequency curve, we focus on peak gains, which is an important design parameters indicating the LLC's operating limit of input voltage and switching frequency. A numerical peak gain approximation method is developed, which provide a direct way to calculate the peak gain and its corresponding load and frequency condition. The approximated results are compared with experiments and simulations, and are proved to be accurate. In addition, as PO mode is the most favorable operation mode of the LLC, its operation region is investigated and an approximation approach is developed to determine its boundary. The design optimization of the LLC has always been a difficult problem as there are many parameters affecting the design and it lacks clear design guidance in selecting the optimal resonant tank parameters. Based on the operation mode model, three optimization methods are proposed according to the design scenarios. These methods focus on minimize the conduction loss of resonant tank while maintaining the required voltage gain level, and the approximations of peak gains and PO mode boundary can be applied here to facilitate the design. A design example is presented using one of the proposed optimization methods. As a comparison, the L-C component values are reselected and tested for the same design specifications. The experiments show that the optimal design has better efficiency performance. Finally, a generalized approach for resonant converter analysis is developed. It can be implemented by computer programs or numerical analysis tools to derive the operation waveforms and DC characteristics of resonant converters.



Analysis And Design Of High Voltage Gain Three Elements Resonant Soft Switching Current Fed Dc Dc Converters


Analysis And Design Of High Voltage Gain Three Elements Resonant Soft Switching Current Fed Dc Dc Converters
DOWNLOAD
Author : Venkata Ratnam Vakacharla
language : en
Publisher:
Release Date : 2020

Analysis And Design Of High Voltage Gain Three Elements Resonant Soft Switching Current Fed Dc Dc Converters written by Venkata Ratnam Vakacharla and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Transportation electrification and distributed generation are proven effective strategies to counter climate change. Modern generation and transportation aim to bring down the carbon footprint by transforming the fossil fuel-driven society with alternate energy sources and electric propulsion, respectively. However, harnessing energy from renewable sources is not straight forward but demands a suitable power electronic interface. Similarly, electric transportation propulsion system demands for specific power conversion stages. These power electronic conversion systems include dc-dc converter and dc-ac inverter. Cost, efficiency, power density, and weight are the major requirements of these converters. To obtain these merits, high-frequency soft-switching converters are selected and designed. Resonant converters with a suitable resonance have been usually explored for voltage-fed switching converters to obtain soft-switching of the semiconductor devices at high-frequency. However, owing to the high voltage gain requirements of the solar/fuel cells/batteries, this thesis explores current-fed topologies with different resonant circuits with natural voltage gain. In traditional voltage-fed resonant converters, it is observed that the converter characteristics can be fine-tuned to design the requirements by proper selection of resonant tank. In addition, the resonant tank can integrate the transformer non-idealities and circuit/device parasitic in circuit operation thereby suppressing the consequent voltage spikes across the semiconductor devices. Since voltage-fed converters is fundamentally not suitable for high voltage gain and low voltage applications, this thesis attempts to improve current-fed dc/dc converter characteristics with resonant tanks. In this thesis, a current-fed load resonant DC/DC converter topology is proposed whose characteristics are tuneable with the adopted resonant tank. Further, this thesis proposes a simple technique to ease and improve accuracy of the Fundamental Harmonic Analysis (FHA), which would have been complex otherwise due to capacitive termination of proposed converter. Initially, the characteristics of the proposed converter topology with a parallel resonance derived LCC-T resonant tank is studied to implement zero voltage switching (ZVS) and zero current switching (ZCS) of the semiconductor devices. Three-phase topology of the same has been investigated and analysed. Following the study and a need to further improve the characteristics of resonant dc/dc converter, a series resonance based LCL resonant converter, a dual of the parallel resonance tank is studied and analysed. The load resonant converters are redeemed for integration of PV/fuel cells. Further, for high power applications, suitability of load resonant converters is verified by adopting resonant tank in three-phase topology. Proof-of-concept hardware prototypes are designed and developed in the laboratory to demonstrate the performance and the merits of the proposed soft-switching resonant converter topologies as well as to prove the proposed theory and the claims.



High Efficiency Resonant Dc Dc Converter For Solar Power Applications


High Efficiency Resonant Dc Dc Converter For Solar Power Applications
DOWNLOAD
Author : Wardah Inam
language : en
Publisher:
Release Date : 2013

High Efficiency Resonant Dc Dc Converter For Solar Power Applications written by Wardah Inam and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across a wide range of input voltage, output voltage and power level. The resistance compression network maintains desired current waveforms over a wide range of voltage operating conditions. The use of on/off control in conjunction with narrowband frequency control enables high efficiency to be maintained across a wide range of power levels. The converter implementation provides galvanic isolation and enables large (greater than 1:10) voltage conversion ratios, making the system suitable for large step-up conversion in applications such as distributed photovoltaic converters. Three 200 W prototypes were designed, built and tested. The first prototype was made as a proof of concept and operated at a switching frequency of 100 kHz. It had an efficiency of 93.5% (at 25 V input and 400 V output). The second prototype was operated at a switching frequency of 500 kHz and had an efficiency of 93% (at 25 V input and 400 V output). The high frequency losses caused by the ringing in voltage and current due to the resonating parasitics of the transformer were removed with the help of a matching network in the third prototype. This final prototype operated at a switching frequency of 500 kHz and showed that over 95% efficiency is maintained across an input voltage range of 25 V - 40 V (at 400 V output) and over 93.7 % efficiency across a wide output voltage range of 250 V - 400 V (at 25 V input). These experimental results demonstrated the effectiveness of the proposed design.



Three Phase High Frequency Transformer Isolated Soft Switching Dc Dc Resonant Converters


Three Phase High Frequency Transformer Isolated Soft Switching Dc Dc Resonant Converters
DOWNLOAD
Author : Mohamed S. M. Almardy
language : en
Publisher:
Release Date : 2011

Three Phase High Frequency Transformer Isolated Soft Switching Dc Dc Resonant Converters written by Mohamed S. M. Almardy and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


There is an increasing demand for power converters with small size, light weight, high conversion efficiency and higher power density. Also, in many applications, there is a need for dc-to-dc converters to accept dc input voltage and provide regulated and/or isolated dc output voltage at a desired voltage level including telecommunications equipment, process control systems, and in industry applications. This thesis presents the analysis, design, simulation and experimental results of three-phase high-frequency transformer isolated resonant converters. The first converter presented is a three-phase LCC-type dc-dc resonant converter with capacitor output filter including the effect of the magnetizing inductance of the three-phase HF transformer. The equivalent ac load resistance is derived and the converter is analyzed by using approximation analysis approach. Base on this analysis, design curves have been obtained and a design example is given. Intusoft simulation results for the designed converter are given for various input voltage and for different load conditions. The experimental verification of the designed converter performance was established by building a 300 W rated power converter and the experimental results have been given. It is shown that the converter works in zero-voltage switching (ZVS) at various input voltage and different load conditions. A three-phase (LC)(L)-type dc-dc series-resonant converter with capacitive output filter has been proposed. Operation of the converter has been presented using the operating waveforms and equivalent circuit diagrams during different intervals. An approximate analysis approach is used to analyze the converter operation, and design procedure is presented with a design example. Intusoft simulation results for the designed converter are given for input voltage and load variations. Experimental results obtained in a 300 W converter are presented. Major advantages of this converter are the leakage and magnetizing inductances of the high-frequency transformer are used as part of resonant circuit and the output rectifier voltage is clamped to the output voltage. The converter operates in soft-switching for the inverter switches for the wide variations in supply voltage and load and it requires narrow switching frequency variation (compared to LCC-type) to regulate the output voltage. A three-phase high-frequency transformer isolated interleaved (LC)(L)-type dc-dc series-resonant converter with capacitive output filter using fixed frequency control is proposed. The converter operation for different modes is presented using the operating waveforms and equivalent circuit diagrams during different intervals. This converter is modeled and then analyzed using the approximate complex ac circuit analysis approach. Based on the analysis, design curves were obtained and the design procedure is presented with a design example. The designed converter is simulated using PSIM software to predict the performance of the converter for variations in supply voltage and load conditions. The converter operates in ZVS for the inverter switches with minimum input voltage and loses ZVS for two switches in each bridge for higher input voltages.



Emerging Power Converters For Renewable Energy And Electric Vehicles


Emerging Power Converters For Renewable Energy And Electric Vehicles
DOWNLOAD
Author : Md. Rabiul Islam
language : en
Publisher: CRC Press
Release Date : 2021-05-30

Emerging Power Converters For Renewable Energy And Electric Vehicles written by Md. Rabiul Islam and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-30 with Technology & Engineering categories.


This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.



Lightning Protection Guide


Lightning Protection Guide
DOWNLOAD
Author : Dehn + Söhne (Neumarkt i.d. OPf.)
language : en
Publisher:
Release Date : 2014

Lightning Protection Guide written by Dehn + Söhne (Neumarkt i.d. OPf.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.




Power Electronics And Renewable Energy Systems


Power Electronics And Renewable Energy Systems
DOWNLOAD
Author : C. Kamalakannan
language : en
Publisher: Springer
Release Date : 2014-11-19

Power Electronics And Renewable Energy Systems written by C. Kamalakannan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-19 with Technology & Engineering categories.


The book is a collection of high-quality peer-reviewed research papers presented in the Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.



Innovations In Electrical And Electronic Engineering


Innovations In Electrical And Electronic Engineering
DOWNLOAD
Author : Margarita N. Favorskaya
language : en
Publisher: Springer Nature
Release Date : 2020-07-25

Innovations In Electrical And Electronic Engineering written by Margarita N. Favorskaya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-25 with Technology & Engineering categories.


The book is a compilation of selected papers from 2020 International Conference on Electrical and Electronics Engineering (ICEEE 2020) held in National Power Training Institute HQ (Govt. of India) on February 21 – 22, 2020. The work focuses on the current development in the fields of electrical and electronics engineering like power generation, transmission and distribution, renewable energy sources and technology, power electronics and applications, robotics, artificial intelligence and IoT, control, and automation and instrumentation, electronics devices, circuits and systems, wireless and optical communication, RF and microwaves, VLSI, and signal processing. The book is beneficial for readers from both academia and industry.



Microgrid Architectures Control And Protection Methods


Microgrid Architectures Control And Protection Methods
DOWNLOAD
Author : Naser Mahdavi Tabatabaei
language : en
Publisher: Springer
Release Date : 2019-08-01

Microgrid Architectures Control And Protection Methods written by Naser Mahdavi Tabatabaei and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-01 with Technology & Engineering categories.


This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians.