Homogenization Of Differential Operators And Integral Functionals

DOWNLOAD
Download Homogenization Of Differential Operators And Integral Functionals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Homogenization Of Differential Operators And Integral Functionals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Homogenization Of Differential Operators And Integral Functionals
DOWNLOAD
Author : V.V. Jikov
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Homogenization Of Differential Operators And Integral Functionals written by V.V. Jikov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.
G Convergence And Homogenization Of Nonlinear Partial Differential Operators
DOWNLOAD
Author : A.A. Pankov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
G Convergence And Homogenization Of Nonlinear Partial Differential Operators written by A.A. Pankov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space.
Homogenization Of Some Partial Differential Operators And Integral Functionals
DOWNLOAD
Author : Peter Wall
language : en
Publisher:
Release Date : 1998
Homogenization Of Some Partial Differential Operators And Integral Functionals written by Peter Wall and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with categories.
Homogenization Algebras And Applications
DOWNLOAD
Author : Gabriel Nguetseng
language : en
Publisher: Springer Nature
Release Date : 2025-05-26
Homogenization Algebras And Applications written by Gabriel Nguetseng and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-26 with Mathematics categories.
The book presents a deterministic homogenization theory intended for the mathematical analysis of non-stochastic multiscale problems, both within and beyond the periodic setting. The main tools are the so-called homogenization algebras, the classical Gelfand representation theory, and a class of actions by the multiplicative group of positive real numbers on numerical spaces. The basic approach is the Sigma-convergence method, which generalizes the well-known two-scale convergence procedure. Numerous problems are worked out to illustrate the theory and highlight its broad applicability. The book is primarily intended for researchers (including PhD students) and lecturers interested in periodic as well as non-periodic homogenization theory.
Evolution Equations Semigroups And Functional Analysis
DOWNLOAD
Author : Brunello Terreni
language : en
Publisher: Springer Science & Business Media
Release Date : 2002
Evolution Equations Semigroups And Functional Analysis written by Brunello Terreni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi
Differential Equations Mathematical Physics And Applications Selim Grigorievich Krein Centennial
DOWNLOAD
Author : Peter Kuchment
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-07-22
Differential Equations Mathematical Physics And Applications Selim Grigorievich Krein Centennial written by Peter Kuchment and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-22 with Mathematics categories.
This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in ordinary and partial differential equations, fluid dynamics, and various applications.
Evolution Equations Semigroups And Functional Analysis
DOWNLOAD
Author : Alfredo Lorenzi
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Evolution Equations Semigroups And Functional Analysis written by Alfredo Lorenzi and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi.
Shape Optimization Homogenization And Optimal Control
DOWNLOAD
Author : Volker Schulz
language : en
Publisher: Springer
Release Date : 2018-09-05
Shape Optimization Homogenization And Optimal Control written by Volker Schulz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-05 with Mathematics categories.
The contributions in this volume give an insight into current research activities in Shape Optimization, Homogenization and Optimal Control performed in Africa, Germany and internationally. Seeds for collaboration can be found in the first four papers in the field of homogenization. Modelling and optimal control in partial differential equations is the topic of the next six papers, again mixed from Africa and Germany. Finally, new results in the field of shape optimization are discussed in the final international three papers. This workshop, held at the AIMS Center Senegal, March 13-16, 2017, has been supported by the Deutsche Forschungsgemeinschaft (DFG) and by the African Institute for Mathematical Sciences (AIMS) in Senegal, which is one of six centres of a pan-African network of centres of excellence for postgraduate education, research and outreach in mathematical sciences.
Stochastic Analysis And Partial Differential Equations
DOWNLOAD
Author : Gui-Qiang Chen
language : en
Publisher: American Mathematical Soc.
Release Date : 2007
Stochastic Analysis And Partial Differential Equations written by Gui-Qiang Chen and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book is a collection of original research papers and expository articles from the scientific program of the 2004-05 Emphasis Year on Stochastic Analysis and Partial Differential Equations at Northwestern University. Many well-known mathematicians attended the events and submitted their contributions for this volume. Topics from stochastic analysis discussed in this volume include stochastic analysis of turbulence, Markov processes, microscopic lattice dynamics, microscopic interacting particle systems, and stochastic analysis on manifolds. Topics from partial differential equations include kinetic equations, hyperbolic conservation laws, Navier-Stokes equations, and Hamilton-Jacobi equations. A variety of methods, such as numerical analysis, homogenization, measure-theoretical analysis, entropy analysis, weak convergence analysis, Fourier analysis, and Ito's calculus, are further developed and applied. All these topics are naturally interrelated and represent a cross-section of the most significant recent advances and current trends and directions in stochastic analysis and partial differential equations. This volume is suitable for researchers and graduate students interested in stochastic analysis, partial differential equations, and related analysis and applications.
Function Spaces Interpolation Theory And Related Topics
DOWNLOAD
Author : Michael Cwikel
language : en
Publisher: Walter de Gruyter
Release Date : 2008-08-22
Function Spaces Interpolation Theory And Related Topics written by Michael Cwikel and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-22 with Mathematics categories.
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.