Homotopy Based Methods In Water Engineering

DOWNLOAD
Download Homotopy Based Methods In Water Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Homotopy Based Methods In Water Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Homotopy Based Methods In Water Engineering
DOWNLOAD
Author : Manotosh Kumbhakar
language : en
Publisher: CRC Press
Release Date : 2023-07-20
Homotopy Based Methods In Water Engineering written by Manotosh Kumbhakar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-20 with Technology & Engineering categories.
Most complex physical phenomena can be described by nonlinear equations, specifically, differential equations. In water engineering, nonlinear differential equations play a vital role in modeling physical processes. Analytical solutions to strong nonlinear problems are not easily tractable, and existing techniques are problem-specific and applicable for specific types of equations. Exploring the concept of homotopy from topology, different kinds of homotopy-based methods have been proposed for analytically solving nonlinear differential equations, given by approximate series solutions. Homotopy-Based Methods in Water Engineering attempts to present the wide applicability of these methods to water engineering problems. It solves all kinds of nonlinear equations, namely algebraic/transcendental equations, ordinary differential equations (ODEs), systems of ODEs, partial differential equations (PDEs), systems of PDEs, and integro-differential equations using the homotopy-based methods. The content of the book deals with some selected problems of hydraulics of open-channel flow (with or without sediment transport), groundwater hydrology, surface-water hydrology, general Burger’s equation, and water quality. Features: Provides analytical treatments to some key problems in water engineering Describes the applicability of homotopy-based methods for solving nonlinear equations, particularly differential equations Compares different approaches in dealing with issues of nonlinearity
Homotopy Analysis Method In Nonlinear Differential Equations
DOWNLOAD
Author : Shijun Liao
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-06-22
Homotopy Analysis Method In Nonlinear Differential Equations written by Shijun Liao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-22 with Mathematics categories.
"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.
Beyond Perturbation
DOWNLOAD
Author : Shijun Liao
language : en
Publisher: CRC Press
Release Date : 2003-10-27
Beyond Perturbation written by Shijun Liao and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-10-27 with Mathematics categories.
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for
Advanced Numerical And Semi Analytical Methods For Differential Equations
DOWNLOAD
Author : Snehashish Chakraverty
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-10
Advanced Numerical And Semi Analytical Methods For Differential Equations written by Snehashish Chakraverty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-10 with Mathematics categories.
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.
Mathematical Methods In Interdisciplinary Sciences
DOWNLOAD
Author : Snehashish Chakraverty
language : en
Publisher: John Wiley & Sons
Release Date : 2020-07-15
Mathematical Methods In Interdisciplinary Sciences written by Snehashish Chakraverty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-15 with Mathematics categories.
Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author's clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems Heat conduction and diffusion problems Fluid dynamics problems The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.
4th International Conference On Computational Mathematics And Engineering Sciences Cmes 2019
DOWNLOAD
Author : Hemen Dutta
language : en
Publisher: Springer Nature
Release Date : 2020-01-10
4th International Conference On Computational Mathematics And Engineering Sciences Cmes 2019 written by Hemen Dutta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-10 with Technology & Engineering categories.
This book gathers original research papers presented at the 4th International Conference on Computational Mathematics and Engineering Sciences, held at Akdeniz University, Antalya, Turkey, on 20–22 April 2019. Focusing on computational methods in science, mathematical tools applied to engineering, mathematical modeling and new aspects of analysis, the book discusses the applications of mathematical modelling in areas such as health science, engineering, computer science, social science, and economics. It also describes a wide variety of analytical, computational, and numerical methods. The conference aimed to foster cooperation between students and researchers in the areas of computational mathematics and engineering sciences, and provide a platform for them to share significant research ideas. This book is a valuable resource for graduate students, researchers and educators interested in the mathematical tools and techniques required for solving various problems arising in science and engineering, and understanding new methods and uses of mathematical analysis.
Recent Advances In Applications Of Computational And Fuzzy Mathematics
DOWNLOAD
Author : Snehashish Chakraverty
language : en
Publisher: Springer
Release Date : 2018-07-17
Recent Advances In Applications Of Computational And Fuzzy Mathematics written by Snehashish Chakraverty and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-17 with Computers categories.
This book addresses the basics of interval/fuzzy set theory, artificial neural networks (ANN) and computational methods. It presents step-by-step modeling for application problems along with simulation and numerical solutions. In general, every science and engineering problem is inherently biased by uncertainty, and there is often a need to model, solve and interpret problems in the world of uncertainty. At the same time, exact information about models and parameters of practical applications is usually not known and precise values do not exist. This book discusses uncertainty in both data and models. It consists of seven chapters covering various aspects of fuzzy uncertainty in application problems, such as shallow water wave equations, static structural problems, robotics, radon diffusion in soil, risk of invasive alien species and air quality quantification. These problems are handled by means of advanced computational and fuzzy theory along with machine intelligence when the uncertainties involved are fuzzy. The proposed computational methods offer new fuzzy computing methods that help other areas of knowledge construction where inexact information is present.
Analytical Methods For Nonlinear Oscillators And Solitary Waves
DOWNLOAD
Author : Chu-Hui He
language : en
Publisher: Frontiers Media SA
Release Date : 2023-11-24
Analytical Methods For Nonlinear Oscillators And Solitary Waves written by Chu-Hui He and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-24 with Science categories.
The most well-known analytical method is the perturbation method, which has led to the great discovery of Neptune in 1846, and since then mathematical prediction and empirical observation became two sides of a coin in physics. However, the perturbation method is based on the small parameter assumption, and the obtained solutions are valid only for weakly nonlinear equations, which have greatly limited their applications to modern physical problems. To overcome the shortcomings, many mathematicians and physicists have been extensively developing various technologies for several centuries, however, there is no universal method for all nonlinear problems, and mathematical prediction with remarkably high accuracy is still much needed for modern physics, for example, the solitary waves traveling along an unsmooth boundary, the low-frequency property of a harvesting energy device, the pull-in voltage in a micro-electromechanical system. Now various effective analytical methods have appeared in the open literature, e.g., the homotopy perturbation method and the variational iteration method. An analytical solution provides a fast insight into its physical properties of a practical problem, e.g., frequency-amplitude relation of a nonlinear oscillator, solitary wave in an optical fiber, pull-in instability of a microelectromechanical system, making mathematical prediction even more attractive in modern physics. Nonlinear physics has been developing into a new stage, where the fractal-fractional differential equations have to be adopted to describe more accurately discontinuous problems, and it becomes ever more difficult to find an analytical solution for such nonlinear problems, and the analytical methods for fractal-fractional differential equations have laid the foundations for nonlinear physics.
Applications Of Semi Analytical Methods For Nanofluid Flow And Heat Transfer
DOWNLOAD
Author : Mohsen Sheikholeslami
language : en
Publisher: Elsevier
Release Date : 2018-01-02
Applications Of Semi Analytical Methods For Nanofluid Flow And Heat Transfer written by Mohsen Sheikholeslami and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-02 with Science categories.
Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in nanofluid flow and heat transfer. The book also includes case studies to illustrate how these methods are used in practice. - Presents detailed information, giving readers a complete familiarity with governing equations where nanofluid is used as working fluid - Provides the fundamentals of new analytical methods, applying them to applications of nanofluid flow and heat transfer in the presence of magnetic and electric field - Gives a detailed overview of nanofluid motion in porous media
Sixth International Conference On Nonlinear Mechanics Icnm 6
DOWNLOAD
Author : Zhe-wei Zhou
language : en
Publisher: DEStech Publications, Inc
Release Date : 2013-08-30
Sixth International Conference On Nonlinear Mechanics Icnm 6 written by Zhe-wei Zhou and has been published by DEStech Publications, Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-30 with Science categories.
Novel mathematical and modeling approaches to problems in graded materials, biological materials, fluid mechanics and more Covers nanomechanics, multi-scale modeling, interface mechanics and microstructure This series volume contains 128 not previously published research presentations on using nonlinear mechanics to understand and model a wide variety of materials, including polymers, metals and composites, as well as subcellular and cellular tissues. Focus is on numerical and physics approaches to representing multiscale relationships within complex solids and fluids systems, with applications in materials science, energy storage, medical diagnostics and treatment, and biotechnology. TABLE OF CONTENTS Preface Committees SESSION 1: INVITED LECTURES Micro-Macro Analysis of Creep and Damage Behavior of Multi-Pass Welds Some New Developments in Non-Linear Solid Mechanics Design of Material Systems: Mathematics and Physics of the Archetype-Genome Exemplar Criticism of Generally Accepted Fundamentals and Methodologies of Traffic and Transportation Theory SESSION 2: NONLINEAR CONTINUUM MECHANICS Geometrically Nonlinear Analysis of Simple Plane Frames of Functionally Graded Materials Thermal Post-Buckling of FG Circular Plates Under Transversely Point-Space Constraint Tunability of Longitudinal Wave Band Gap in One Dimensional Magneto-Elastic Phononic Crystal Teaching Nonlinear Mechanics at the Undergraduate and Graduate Level—Two Examples Geometrically Nonlinear FE Instability Simulations of Hinged Composite Laminated Cylindrical Shells Constitutive Relation of Martensitic Transformation in CuAlNi Based on Atomistic Simulations Soft Behaviors of Beam Shaped Liquid Crystal Elastomers Under Light Actuations XFEM Based Discontinuity Simulation for Saturated Soil Numerical Algorithm of Solving the Problem of Large Elastic-Plastic Deformation by FEM Finite Deformation for Everted Compressible Hypereleastic Cylindrical Tubes Modelling and Non-Linear Free Vibrations of Cable-Stayed Beam Wavelet Solution of a Class of Nonlinear Boundary Value Problems Axial Compression of a Rectangular Rubber Ring Composed of an Incompressible Mooney-Rivlin Material Influence of Concentration-Dependent Elastic Modulus and Charge or Discharge Rate on Tensile Stress in Anode An Integral Equation Approach to the Fully Nonlinear Fluid Flow Problem in an Infinite Channel Over Arbitrary Bottom Topography Analysis of Nonlinear Dynamical Characteristics for Thermoelastic Half-Plane with Voids Tensor Model for Dynamic Damage of Ductile Metals Over a Wide Range of Strain Rates SESSION 3: MULTI-SCALE MECHANICS AND MULTI-PHYSICS MODELING The Nonlinear Magnetoelectric Effect of Layered Magnetoelectric Composite Cylinder with an Imperfect Interface A Solution for Nonlinear Poisson-Neumann Problem of Nb3Sn Superconducting Transport Current Temperature Effect on the Tensile Mechanical Properties of Graphene Nanoribbons Square Inclusion with a Nonlinear Eigenstrain in an Anisotropic Piezoelectric Full Plane Nonlinear Analysis of the Threaded Connection with Three-Dimensional Finite Element Model Effects of Particle Volume Fraction on the Macro-Thermo-Mechanical Behaviors in Plate-Type Dispersion Nuclear Fuel Elements Mechanics of Semiflexible Polymer Chains Under Confinements Study on the Solution of Reynolds Equation for Micro Gas Bearings Using the Alternating-Direction Implication Algorithm Atomistic Study of Li Concentration Dependence of the Mechanical Properties of Graphite Anode in Li-ion Battery 3D Extrusion Simulation of the Single Screw Head and Optimization Design Buckling Behavior of Defective Carbon Nanotubes Elastic Properties of Single-Stranded DNA Biofilm with Strong Interactions Analysis on Thickness Dependence of Jc Caused by Dislocations and Grain Boundaries in YBCO Superconducting Films Operating Strain Response in CICC Coils Through Nonlinear Finite Element Modeling Dynamics Analysis of a Multi-Degree-of-Freedom Electro-Hydraulic Mix-Drive Motion Simulator by KANE Equation Multiscale 3D Fracture Simulation Integrating Tomographic Characterization Research into Compressive Mechanical Properties of Special Piezomagnetic Material Sheets A Numerical Study on Detonation Wave Propagation Using High-Precision and High-Resolution Schemes SESSION 4: STRUCTURAL DYNAMIC AND STRUCTURE-FLUID INTERACTIONS A Study on Pure IL VIV of a Marine Riser in Shear Current Parametric Studies on Nonlinear Flutter of High-Aspect-Ratio Flexible Wings Model Reduction of a Flexible Beam Rotating at High Speed Considering Dynamic Stiffening Vibration Modal Analysis of Cantilever Beams with Complicated Elasticity Boundary Constraint Numerical Simulation of Ahmed Model in Consideration of the FSI Effect Aerodynamic Damping of a Hammerhead Launch Vehicle in Transonic Flow Symmetry Reductions and Explicit Solutions of (3 + 1)-Dimensional Kadomtsev-Petviashvili (KP) Equation Nonlinear Behaviors of an Isotropic Incompressible Hyperelastic Spherical Membrane Under Different Dynamic Loads Creep Buckling of Viscoelastic Plate Consdering Higher Order Modes SESSION 5: COMPLEX FLUID FLOW AND NONLINEAR STABILITY Homotopy Analysis of Korteweg-de Vries Equation with Time Delay Homotopy Analysis Method for Bubble Pulsation Equation with Nonlinear Term of Fractional Power Chebyshev Finite Spectral Method for Boussinesq-Type Equations on Staggered Grids Twin Jets in Crossflow Application of Fixed Point Method to Obtain a Semi-Analytical Solution of Stagnation Flow On the Nonlinear Stability of Laminar Flow Between Parallel Planes Boundary Treatments in Lattice Boltzmann Method A Lattice Boltzmann Based Immersed Boundary Method for Fluid-Structure Interaction Numerical Solutions of Convection-Diffusion Equations by Hybrid Discontinuous Galerkin Methods Steady-State Solutions of the Wave-Bottom Resonant Interaction Lattice Boltzmann Simulation of the Shock Damping and the Shock Increased by Means of Lorentz Force Analysis of the Effects of Nonlinear Characteristics of Lag Dampers on Helicopter Ground Resonance Flow Structures and Sound Radiation in Supersonic Mixing Layers with Nonlinear PSE Method Turbulent Structures in Subsonic Jet Flow Forced by Random Disturbances Exponential p-Stability for a Delayed Recurrent Neural Networks with Impulses Spatial Variation of Scaling Exponents for Structure Functions in a Decaying Turbulence SESSION 6: NONLINEAR DYNAMIC OF STRUCTURE Analysis of Chaos Behavior of Single Mode Vibration of Cable-Stayed Chaotification of Fractional Maps Nonlinear Finite Element Analysis of the Dynamic Axial Crushing of Empty Hexagonal Tube Active Control of a Nonlinear Aeroelastic System Using the Receptance Method Dynamics Analysis of the FHN Neuronal Model Analyzing the Effect of the Axial Force to the Natural Frequencies of Arch Stable Periodic Response of One-Way Clutches in a Two-Pulley Belt-Drive Model Supercritical Nonlinear Dynamics of an Axially Moving Viscoelastic Beam with Speed Fluctuation Nonlinear Dynamic Response to a Moving Force of Timoshenko Beams Resting on Pasternak Foundations An Improved Method for the Construction of Nonlinear Operator in Homotopy Analysis Method A Nonlinear Integration Scheme for Evolutionary Differential Equations A Comparative Study of Civil Aircraft Crashworthiness with Different Ground Conditions Improved Dynamic Analysis of Development of Pulmonary Edema The Timescale Function Method for Solving Free Vibration of Nonlinear Oscillator Nonlinear Aeroelastic Analysis of Flexible Wings with High-Aspect-Ratio Considering Large Deflection Differential Quadrature Method for Vibration Analysis of Finite Beams on Nonlinear Viscoelastic Foundations Numerical Simulation on the Strength and Sealing Performance for High-Pressure Isolating Flange Nonlinear Dynamical Stability of the Lattices with Initial Material and Geometric Imperfection Nonlinear Vibration of Symmetric Angle-Ply Laminated Piezoelectric Plates with Linearly Varying Thickness An Exact Free Vibration Frequency Formula for Oscillator with Single-Term Positive-Power Restoring Force An Exact Solution of Synchronization State for a Class of Networked Mass-Spring-Damper Oscillator Systems SESSION 7: INTERFACE MECHANICS AND ENGINEERING APPLICATION Numerical Simulation of Free Surface Collapse in Propellant Tank Restudy on the Adaptive Mesh Technique for Seepage Problems High-Order Series Solutions of Wave and Current Interactions Deformation and Stress Distribution of Arterial Walls of the Aged A p53-Mdm2 Dynamical Model Induced by Laminar Shear Stress in Endothelial Cells Optimized Image Processing Based on CUDA in a Combined Measurement Technique of PIV and Shadowgraph 3D Visualization of the Flow Fields Using Digital In-Line Holography Analysis and Experimental Study on Air Foam Flooding Seepage Flow Mechanics Experimental Measurements for Mechanical and Electrical Conductive Properties of CNT Bundles Analysis on Dynamic Response of Bedding Rock Slope with Bolts under Earthquakes Numerical Prediction of Aerodynamic Noise Radiated from High Speed Train Pantograph Effects of Length on Aerodynamics of High Speed Train Models Free Convection Nanofluid Flow in the Stagnation-Point Region of a Three Dimensional Body Vertical Distribution and Dynamic Release Characteristics of Pollutants from Resuspended Sediment Numerical Simulation of the Contaminant Release Through the Sediment-Overlying Water Interface Analysis on the Aerodynamic and Aero-Noise of MIRA Model Radial Squeeze Force of MR Fluid Between Two Cylinders Nonlinear Buckling Analysis and Ultimate Extended Capacity Research of Downhole Pipe Strings in Ultra-Deep Horizontal Wells A Novel Method of Generating Nonlinear Internal Wave in a Stratified Fluid Tank and Its Theoretical Model SESSION 8: MINI-SYMPOSIUM ON TRAFFIC FLUID Study on Correlation Analysis of Synchronized Flow in the Kerner-Klenov-Wolf Cellular Automation Model Numerical Simulation of Traffic Flow in the Rain or Snow Weather Condition First Order Phase Transitions in the Brake Light Cellular Automation Model Within the Fundamental Diagram Approach The Leader-Follower Winding Behavior of Pedestrians in a Queue Effect of Overpasses in Two-Dimensional Traffic Flow Model with Random Update Rule Analysis of the Density Wave in a New Continuum Model The Phenomenon of High-Speed-Car-Following on Chinese Highways A Lattice Hydrodynamic Model Considering the Difference of Density and its Analysis Experimental Feature of Car-Following Behaviors in a Platoon of 25 Vehicles Car-Following Model for Manual Transmission Vehicles The Mechanism of Synchronized Flow in Traffic Flow Modeling An Asymmetric Stochastic Car-Following Model Based on Extended Tau Theory A Gaussian Distribution Based Dual-Cognition Driver Behavior Model at Cross Traffic A New Traffic Kinetic Model Considering Potential Influence The Effect of Marks on the Pedestrian Evacuation Equilibrium Velocity Distribution Function for Traffic Flow Effects of Antilock Braking System on Driving Behavior Under Emergent Stability Analysis of Pedestrian Flow in Two-Dimensional Optimal Velocity Model with Asymmetric Interaction Simulation-Based Stability Analysis of Car-Following Models Under Heterogeneous Traffic Crossing Speed of Pedestrian at an Unsignalized Intersection Modeling Mixed Traffic Flow at a Crosswalk with Push Button Effects of Game Strategy Update on Pedestrian Evacuation in a Hall Study on Long-Term Correlation of CO and CO2 from Vehicle Emissions on Roadsides with the Detrended Fluctuation Analysis Method Bottleneck Effect on a Bidirectional Two-Lane Mixed Traffic Flow