Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects

DOWNLOAD
Download Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects
DOWNLOAD
Author : Frank Neumann
language : en
Publisher: Springer Nature
Release Date : 2021-09-29
Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects written by Frank Neumann and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-29 with Mathematics categories.
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects
DOWNLOAD
Author : Frank Neumann
language : en
Publisher:
Release Date : 2021
Homotopy Theory And Arithmetic Geometry Motivic And Diophantine Aspects written by Frank Neumann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on 'Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects' and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank's contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
Triangulated Categories Of Mixed Motives
DOWNLOAD
Author : Denis-Charles Cisinski
language : en
Publisher: Springer Nature
Release Date : 2019-11-09
Triangulated Categories Of Mixed Motives written by Denis-Charles Cisinski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-09 with Mathematics categories.
The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.
Diophantine Geometry
DOWNLOAD
Author : Marc Hindry
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Diophantine Geometry written by Marc Hindry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Rational Homotopy Theory And Differential Forms
DOWNLOAD
Author : Phillip Griffiths
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-02
Rational Homotopy Theory And Differential Forms written by Phillip Griffiths and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-02 with Mathematics categories.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
Rational Points And Arithmetic Of Fundamental Groups
DOWNLOAD
Author : Jakob Stix
language : en
Publisher: Springer
Release Date : 2012-10-19
Rational Points And Arithmetic Of Fundamental Groups written by Jakob Stix and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-19 with Mathematics categories.
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.
Elements Of Homotopy Theory
DOWNLOAD
Author : George W. Whitehead
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Elements Of Homotopy Theory written by George W. Whitehead and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.
Arakelov Geometry And Diophantine Applications
DOWNLOAD
Author : Emmanuel Peyre
language : en
Publisher: Springer Nature
Release Date : 2021-03-10
Arakelov Geometry And Diophantine Applications written by Emmanuel Peyre and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-10 with Mathematics categories.
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
O Minimality And Diophantine Geometry
DOWNLOAD
Author : G. O. Jones
language : en
Publisher: Cambridge University Press
Release Date : 2015-08-13
O Minimality And Diophantine Geometry written by G. O. Jones and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-13 with Mathematics categories.
This book brings the researcher up to date with recent applications of mathematical logic to number theory.
Etale Homotopy
DOWNLOAD
Author : Michael Artin
language : en
Publisher: Springer
Release Date : 2006-11-14
Etale Homotopy written by Michael Artin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.