[PDF] Hyperbolic Knot Theory - eBooks Review

Hyperbolic Knot Theory


Hyperbolic Knot Theory
DOWNLOAD

Download Hyperbolic Knot Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hyperbolic Knot Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hyperbolic Knot Theory


Hyperbolic Knot Theory
DOWNLOAD
Author : Jessica S. Purcell
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-10-06

Hyperbolic Knot Theory written by Jessica S. Purcell and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-06 with Education categories.


This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.



Handbook Of Knot Theory


Handbook Of Knot Theory
DOWNLOAD
Author : William Menasco
language : en
Publisher: Elsevier
Release Date : 2005-08-02

Handbook Of Knot Theory written by William Menasco and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-02 with Mathematics categories.


This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics



The Knot Book


The Knot Book
DOWNLOAD
Author : Colin Conrad Adams
language : en
Publisher: American Mathematical Soc.
Release Date : 2004

The Knot Book written by Colin Conrad Adams and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.



Introductory Lectures On Knot Theory


Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012

Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.



The Mathematics Of Knots


The Mathematics Of Knots
DOWNLOAD
Author : Markus Banagl
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-25

The Mathematics Of Knots written by Markus Banagl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-25 with Mathematics categories.


The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.



Lectures On Hyperbolic Geometry


Lectures On Hyperbolic Geometry
DOWNLOAD
Author : Riccardo Benedetti
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Lectures On Hyperbolic Geometry written by Riccardo Benedetti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In recent years hyperbolic geometry has been the object and the preparation for extensive study that has produced important and often amazing results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it reaches recent developments of the theory, the book is mainly addressed to graduate-level students approaching research, but it will also be a helpful and ready-to-use tool to the mature researcher. After collecting some classical material about the geometry of the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (of which a complete proof is given following Gromov and Thurston) and Margulis' lemma. These results form the basis for the study of the space of the hyperbolic manifolds in all dimensions (Chabauty and geometric topology); a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory. A large part is devoted to the three-dimensional case: a complete and elementary proof of the hyperbolic surgery theorem is given based on the possibility of representing three manifolds as glued ideal tetrahedra. The last chapter deals with some related ideas and generalizations (bounded cohomology, flat fiber bundles, amenable groups). This is the first book to collect this material together from numerous scattered sources to give a detailed presentation at a unified level accessible to novice readers.



Knots And Primes


Knots And Primes
DOWNLOAD
Author : Masanori Morishita
language : en
Publisher: Springer
Release Date : 2024-02-28

Knots And Primes written by Masanori Morishita and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-28 with Mathematics categories.


This book provides a foundation for arithmetic topology, a new branch of mathematics that investigates the analogies between the topology of knots, 3-manifolds, and the arithmetic of number fields. Arithmetic topology is now becoming a powerful guiding principle and driving force to obtain parallel results and new insights between 3-dimensional geometry and number theory. After an informative introduction to Gauss' work, in which arithmetic topology originated, the text reviews a background from both topology and number theory. The analogy between knots in 3-manifolds and primes in number rings, the founding principle of the subject, is based on the étale topological interpretation of primes and number rings. On the basis of this principle, the text explores systematically intimate analogies and parallel results of various concepts and theories between 3-dimensional topology and number theory. The presentation of these analogies begins at an elementary level, gradually building to advanced theories in later chapters. Many results presented here are new and original. References are clearly provided if necessary, and many examples and illustrations are included. Some useful problems are also given for future research. All these components make the book useful for graduate students and researchers in number theory, low dimensional topology, and geometry. This second edition is a corrected and enlarged version of the original one. Misprints and mistakes in the first edition are corrected, references are updated, and some expositions are improved. Because of the remarkable developments in arithmetic topology after the publication of the first edition, the present edition includes two new chapters. One is concerned with idelic class field theory for 3-manifolds and number fields. The other deals with topological and arithmetic Dijkgraaf–Witten theory, which supports a new bridge between arithmetic topology and mathematical physics.



Encyclopedia Of Knot Theory


Encyclopedia Of Knot Theory
DOWNLOAD
Author : Colin Adams
language : en
Publisher: CRC Press
Release Date : 2021-02-10

Encyclopedia Of Knot Theory written by Colin Adams and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Education categories.


"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory



Why Knot


Why Knot
DOWNLOAD
Author : Colin Adams
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-03-29

Why Knot written by Colin Adams and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-29 with Mathematics categories.


Colin Adams, well-known for his advanced research in topology and knot theory, is the author of this exciting new book that brings his findings and his passion for the subject to a more general audience. This beautifully illustrated comic book is appropriate for many mathematics courses at the undergraduate level such as liberal arts math, and topology. Additionally, the book could easily challenge high school students in math clubs or honors math courses and is perfect for the lay math enthusiast. Each copy of Why Knot? is packaged with a plastic manipulative called the Tangle R. Adams uses the Tangle because "you can open it up, tie it in a knot and then close it up again." The Tangle is the ultimate tool for knot theory because knots are defined in mathematics as being closed on a loop. Readers use the Tangle to complete the experiments throughout the brief volume. Adams also presents a illustrative and engaging history of knot theory from its early role in chemistry to modern applications such as DNA research, dynamical systems, and fluid mechanics. Real math, unreal fun!



Foundations Of Hyperbolic Manifolds


Foundations Of Hyperbolic Manifolds
DOWNLOAD
Author : John Ratcliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Foundations Of Hyperbolic Manifolds written by John Ratcliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.