Ill Posed Problems Theory And Applications

DOWNLOAD
Download Ill Posed Problems Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ill Posed Problems Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Inverse And Ill Posed Problems
DOWNLOAD
Author : Sergey I. Kabanikhin
language : en
Publisher: Walter de Gruyter
Release Date : 2011-12-23
Inverse And Ill Posed Problems written by Sergey I. Kabanikhin and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-23 with Mathematics categories.
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.
Numerical Methods For The Solution Of Ill Posed Problems
DOWNLOAD
Author : A.N. Tikhonov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Numerical Methods For The Solution Of Ill Posed Problems written by A.N. Tikhonov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
Well Posed Ill Posed And Intermediate Problems With Applications
DOWNLOAD
Author : Petrov Yuri P.
language : en
Publisher: Walter de Gruyter
Release Date : 2011-12-22
Well Posed Ill Posed And Intermediate Problems With Applications written by Petrov Yuri P. and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-22 with Mathematics categories.
This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors. Until recently, all problems in mathematics, physics and engineering were divided into two classes: well-posed problems and ill-posed problems. The authors introduce a third class of problems: intermediate ones, which are problems that change their property of being well- or ill-posed on equivalent transformations of governing equations, and also problems that display the property of being either well- or ill-posed depending on the type of the functional space used. The book is divided into two parts: Part one deals with general properties of all three classes of mathematical, physical and engineering problems with approaches to solve them; Part two deals with several stable models for solving inverse ill-posed problems, illustrated with numerical examples.
Computational Methods For Inverse Problems
DOWNLOAD
Author : Curtis R. Vogel
language : en
Publisher: SIAM
Release Date : 2002-01-01
Computational Methods For Inverse Problems written by Curtis R. Vogel and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Inverse And Ill Posed Problems
DOWNLOAD
Author : Heinz W. Engl
language : en
Publisher:
Release Date : 1987
Inverse And Ill Posed Problems written by Heinz W. Engl and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987 with Mathematics categories.
Inverse and Ill-Posed Problems.
Linear And Nonlinear Inverse Problems With Practical Applications
DOWNLOAD
Author : Jennifer L. Mueller
language : en
Publisher: SIAM
Release Date : 2012-11-30
Linear And Nonlinear Inverse Problems With Practical Applications written by Jennifer L. Mueller and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Mathematics categories.
Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.
An Introduction To The Mathematical Theory Of Inverse Problems
DOWNLOAD
Author : Andreas Kirsch
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-24
An Introduction To The Mathematical Theory Of Inverse Problems written by Andreas Kirsch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-24 with Mathematics categories.
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.
Fixed Point Algorithms For Inverse Problems In Science And Engineering
DOWNLOAD
Author : Heinz H. Bauschke
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-05-27
Fixed Point Algorithms For Inverse Problems In Science And Engineering written by Heinz H. Bauschke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-27 with Mathematics categories.
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Regularization Of Inverse Problems
DOWNLOAD
Author : Heinz Werner Engl
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-03-31
Regularization Of Inverse Problems written by Heinz Werner Engl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-31 with Mathematics categories.
This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
Inverse Problems
DOWNLOAD
Author : Alexander G. Ramm
language : en
Publisher: Springer
Release Date : 2004-12-16
Inverse Problems written by Alexander G. Ramm and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-16 with Computers categories.
Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.