Imbalanced Classification With Python

DOWNLOAD
Download Imbalanced Classification With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Imbalanced Classification With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Imbalanced Classification With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2020-01-14
Imbalanced Classification With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-14 with Computers categories.
Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.
Parallel Problem Solving From Nature Ppsn Xvi
DOWNLOAD
Author : Thomas Bäck
language : en
Publisher: Springer Nature
Release Date : 2020-09-02
Parallel Problem Solving From Nature Ppsn Xvi written by Thomas Bäck and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-02 with Computers categories.
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Imbalanced Learning
DOWNLOAD
Author : Haibo He
language : en
Publisher: John Wiley & Sons
Release Date : 2013-06-07
Imbalanced Learning written by Haibo He and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-07 with Technology & Engineering categories.
The first book of its kind to review the current status and future direction of the exciting new branch of machine learning/data mining called imbalanced learning Imbalanced learning focuses on how an intelligent system can learn when it is provided with imbalanced data. Solving imbalanced learning problems is critical in numerous data-intensive networked systems, including surveillance, security, Internet, finance, biomedical, defense, and more. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. The first comprehensive look at this new branch of machine learning, this book offers a critical review of the problem of imbalanced learning, covering the state of the art in techniques, principles, and real-world applications. Featuring contributions from experts in both academia and industry, Imbalanced Learning: Foundations, Algorithms, and Applications provides chapter coverage on: Foundations of Imbalanced Learning Imbalanced Datasets: From Sampling to Classifiers Ensemble Methods for Class Imbalance Learning Class Imbalance Learning Methods for Support Vector Machines Class Imbalance and Active Learning Nonstationary Stream Data Learning with Imbalanced Class Distribution Assessment Metrics for Imbalanced Learning Imbalanced Learning: Foundations, Algorithms, and Applications will help scientists and engineers learn how to tackle the problem of learning from imbalanced datasets, and gain insight into current developments in the field as well as future research directions.
Imbalanced Classification With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher:
Release Date : 2020
Imbalanced Classification With Python written by Jason Brownlee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Algorithms categories.
"Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects." --
Machine Learning With Python Cookbook
DOWNLOAD
Author : Chris Albon
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-03-09
Machine Learning With Python Cookbook written by Chris Albon and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-09 with Computers categories.
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Machine Learning Mastery With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-04-08
Machine Learning Mastery With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-08 with Computers categories.
The Python ecosystem with scikit-learn and pandas is required for operational machine learning. Python is the rising platform for professional machine learning because you can use the same code to explore different models in R&D then deploy it directly to production. In this Ebook, learn exactly how to get started and apply machine learning using the Python ecosystem.
Data Democracy
DOWNLOAD
Author : Feras A. Batarseh
language : en
Publisher: Academic Press
Release Date : 2020-01-21
Data Democracy written by Feras A. Batarseh and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-21 with Science categories.
Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering provides a manifesto to data democracy. After reading the chapters of this book, you are informed and suitably warned! You are already part of the data republic, and you (and all of us) need to ensure that our data fall in the right hands. Everything you click, buy, swipe, try, sell, drive, or fly is a data point. But who owns the data? At this point, not you! You do not even have access to most of it. The next best empire of our planet is one who owns and controls the world's best dataset. If you consume or create data, if you are a citizen of the data republic (willingly or grudgingly), and if you are interested in making a decision or finding the truth through data-driven analysis, this book is for you. A group of experts, academics, data science researchers, and industry practitioners gathered to write this manifesto about data democracy. - The future of the data republic, life within a data democracy, and our digital freedoms - An in-depth analysis of open science, open data, open source software, and their future challenges - A comprehensive review of data democracy's implications within domains such as: healthcare, space exploration, earth sciences, business, and psychology - The democratization of Artificial Intelligence (AI), and data issues such as: Bias, imbalance, context, and knowledge extraction - A systematic review of AI methods applied to software engineering problems
Machine Learning Pocket Reference
DOWNLOAD
Author : Matthew Harrison
language : en
Publisher:
Release Date : 2019
Machine Learning Pocket Reference written by Matthew Harrison and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Machine learning categories.
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines.
Practical Weak Supervision
DOWNLOAD
Author : Wee Hyong Tok
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-09-30
Practical Weak Supervision written by Wee Hyong Tok and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.
Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling
Database And Expert Systems Applications
DOWNLOAD
Author : Sven Hartmann
language : en
Publisher: Springer Nature
Release Date : 2020-09-12
Database And Expert Systems Applications written by Sven Hartmann and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-12 with Computers categories.
The double volumes LNCS 12391-12392 constitutes the papers of the 31st International Conference on Database and Expert Systems Applications, DEXA 2020, which will be held online in September 2020. The 38 full papers presented together with 20 short papers plus 1 keynote papers in these volumes were carefully reviewed and selected from a total of 190 submissions.