Impacts Of Co2 Perturbation On The Ecology And Biogeochemistry Of Plankton Communities During A Simulated Upwelling Event A Mesocosm Experiment In Oligotrophic Subtropical Waters
DOWNLOAD
Download Impacts Of Co2 Perturbation On The Ecology And Biogeochemistry Of Plankton Communities During A Simulated Upwelling Event A Mesocosm Experiment In Oligotrophic Subtropical Waters PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Impacts Of Co2 Perturbation On The Ecology And Biogeochemistry Of Plankton Communities During A Simulated Upwelling Event A Mesocosm Experiment In Oligotrophic Subtropical Waters book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Impacts Of Co2 Perturbation On The Ecology And Biogeochemistry Of Plankton Communities During A Simulated Upwelling Event A Mesocosm Experiment In Oligotrophic Subtropical Waters
DOWNLOAD
Author : Eric ‘Pieter Achterberg
language : en
Publisher: Frontiers Media SA
Release Date : 2020-09-18
Impacts Of Co2 Perturbation On The Ecology And Biogeochemistry Of Plankton Communities During A Simulated Upwelling Event A Mesocosm Experiment In Oligotrophic Subtropical Waters written by Eric ‘Pieter Achterberg and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-18 with Science categories.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Response Of Plankton Communities To Ocean Warming And Acidification In The Nw Mediterranean Sea
DOWNLOAD
Author : Laure Maugendre
language : en
Publisher:
Release Date : 2014
Response Of Plankton Communities To Ocean Warming And Acidification In The Nw Mediterranean Sea written by Laure Maugendre and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.
Plankton plays a key role in the global carbon cycle. It is therefore important to projectthe evolution of plankton community structure and function in a future high-CO2 world.Several experimental results reported at the community level have shown increased rates ofprimary production as a function of increasing pCO2 and few multi-driver experiments havebeen performed. However, the great majority of these experiments have been performedunder high natural or nutrient-enriched conditions and very few data are available in areaswith naturally low levels of nutrient and chlorophyll i.e. oligotrophic areas such as theMediterranean Sea, although they represent a large and expanding part of the ocean surface.Several approaches have been used during this thesis to investigate the effects ofocean warming and acidification on plankton communities in the NW Mediterranean Sea.One approach, restricted to the investigation of ocean acidification effects alone, was the useof mesocosms. In the Bay of Calvi (experiment #1; summer 2012 during 22 days), thecommunity was very efficient in recycling nutrients and showed important regeneratedproduction while in the Bay of Villefranche (experiment #2; winter/spring 2013 during 11days) the community was characterized by a more autotrophic state and larger newproduction. A third experiment was set-up to investigate the combined effects of oceanacidification and warming in small containers in the Bay of Villefranche (experiment #3;March 2012; post-bloom conditions).All experiments were conducted under low nutrient conditions with communitiesdominated by small species (e.g. haptophytes, cyanobacteria, chlorophytes). During the thirdexperiment, biomass of populations decreased throughout the experiment (12 days), exceptcyanobacteria (mostly Synechococcus spp.) that significantly increased during that period.This increase was even more pronounced under elevated temperature, albeit the combinationwith elevated pCO2 tended to limit this effect. For the three experiments, ocean acidificationalone had no effect on any of the metabolic processes, irrespective of the methods used (O2-LD, as well as 18O, 13C and 14C labelling) while during the multi-driver experiment #3, oceanwarming led to enhanced gross primary production as measured by the 18O labellingtechnique. Specific biomarkers, polar lipid fatty acids, were used in combination with 13Clabelling to assess group primary production rates. This confirmed that ocean acidificationalone did not favour any phytoplankton group under our experimental conditions.Based on our findings and on an extensive literature review, it appears that most (57%) of the experiments performed to date have shown no effect of ocean acidification alonewhile ocean warming seem to have an effect on plankton composition and production.Furthermore, plankton biomass in ecosystems dominated by small phytoplankton speciesappears insensitive to elevated CO2. It remains, for the moment, impossible based on thesefindings to provide a general concept on the effect of ocean acidification on planktoncommunities. However, it appears that ocean acidification will likely not lead to increasedbiomass and primary production rates for most communities, as it was previously anticipated.Furthermore, although warming will likely lead to increased primary production, it appearsthat small species with a low capacity for export will be favoured. If this proves to be awidespread response, plankton will not help mitigating atmospheric CO2 increase through anenhancement of the biological pump.
Nutrient Enrichment Promotes Eutrophication In The Form Of Macroalgal Blooms Causing Cascading Effects In Two Anthropogenically Disturbed Coastal Ecosystems
DOWNLOAD
Author : Tiara N Moore
language : en
Publisher:
Release Date : 2019
Nutrient Enrichment Promotes Eutrophication In The Form Of Macroalgal Blooms Causing Cascading Effects In Two Anthropogenically Disturbed Coastal Ecosystems written by Tiara N Moore and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Humans are impacting almost every major ecological process that structures communities and ecosystems. Examples of how human activity can directly control key processes in ecosystems include destruction of habitat changing trophic structure, nutrient pollution altering competitive outcomes, overharvesting of consumers reducing top down control, and now climate change impacting virtually every global biogeochemical cycle. These human impacts may have an independent effect on the ecosystem, but they also have the potential to cause cascading effects and promote subsequent stressors. Also, these impacts are not limited to a particular system or geographic location making research on their overall effects vital for management practices. For example, tropical reefs have been transitioning from coral to mixed communities dominated by macroalgae, motivating research on how macroalgae respond to anthropogenic stressors and interact with each other during these stressful events. Further, while eutrophication of coastal estuaries due to increased anthropogenic supplies of nutrients has been of critical global concern for decades, the potential for eutrophication to drive new stressors is a growing concern. To address these knowledge gaps, I investigated how human stressors impact two different and major coastal ecosystems known to be vulnerable to anthropogenic disturbances. In chapter 1, I demonstrate that anthropogenic stressors in the form of increased nutrients in the water and sediments have strong impacts on interspecific interactions of coral reef macroalgae. Abiotic stressors such as nutrients have been linked to phase-shifts from coral to algal domination on tropical reefs. However, few studies have considered how these stressors impact changes in the biotic and abiotic constituents of dominant species of calcifying macroalgae, and how this may be mediated by species-species interactions. I conducted 4 mesocosm experiments to examine whether different nutrient sources (water column vs. terrestrial sediment) as well as species interactions (alone vs. mixed species) affected total mass (biomass + calcium carbonate (CaCO3)) of two common calcifying macroalgae (Padina boryana and Galaxaura fasciculata). P. boryana gained total mass with increased water column nutrients but declined with increased nutrients supplied by the sediment. Conversely, G. fasciculata gained total mass with increased nutrients in the sediment but declined with increased water column nutrients. In both interactions, the "winner" (i.e., G. fasciculata in the sediment experiment) also had a greater % of thallus mass comprised of CaCO3, potentially due to the subsequent decomposition of the "loser" as this result was not found in the alone treatments. These findings ultimately suggest that nutrient stressors can cause cascading effects, such as promoting calcification and biomass growth or loss in these macroalgal communities, and the potential for domination or decline is based on the nutrient source and community composition. In chapter 2, I demonstrate that decomposition of macroalgal blooms cause a sequence of biogeochemical processes that can drive acidification in shallow coastal estuaries, and that these processes are mediated by a dynamic microbial community. Eutrophication and ocean acidification are both widely acknowledged as major human-induced stressors in marine environments. While the link between eutrophication and acidification has been established for phytoplankton, it is unclear whether eutrophication in the form of macroalgal blooms can cause cascading effects like acidification in shallow eutrophic estuaries. I conducted seasonal field surveys and assessed microbial communities and functional genes to evaluate changes in biotic and abiotic characteristics between seasons that may be associated with acidification in Upper Newport Bay, CA, USA. Acidification, measured as a drop in pH of 0.7, occurred in summer at the site with the most macroalgal cover. Microbial community composition and functional gene expression provide evidence that decomposition processes contributed to acidification, and also suggest that other biogeochemical processes like nitrification and degradation of polyphosphate also contributed to acidification. To my knowledge, my findings represent the first field evidence that eutrophication of shallow coastal estuaries dominated by green macroalgal blooms can cascade to acidification. In chapter 3, I demonstrate that macroalgal blooms in shallow estuaries are strong drivers of key microbially-mediated biogeochemical processes that can cause cascading effects, such as acidification and nutrient fluxing, regardless of simulated tidal flushing. Estuaries are productive and diverse ecosystems and are vulnerable to eutrophication from increased anthropogenic nutrients. While it is known that enhanced tidal flushing can reduce adverse effects of anthropogenic disturbances in larger, deeper estuarine ecosystems, this is unexplored for eutrophication in shallow coastal estuaries where macroalgae usually dominate. I simulated eutrophication as a macroalgal bloom in a mesocosm experiment, varied tidal flushing (flushed daily vs unflushed), and assessed the effects on water column and sediment biogeochemical processes and the sediment microbial community. While flushing did not ameliorate the negative effects of the macroalgal bloom, it caused transient differences in the rate of change in biogeochemical processes and promoted increased fluxes of nutrients from the sediment. In the beginning, the macroalgal bloom induced basification and increased total alkalinity, but during decomposition, acidification and the accumulation of nutrients in the sediment and water column occurred. The findings from this chapter ultimately suggest that macroalgal blooms have the potential to be the cause of, yet may also offer a partial solution to, global ecological changes to biogeochemical processes. Overall, my results indicate that anthropogenic disturbances, particularly in the form of increased nutrients, can cause cascading effects like macroalgal blooms that in turn cause acidification, basification, increased interspecific interactions, nutrient depletion, and nutrient fluxing in multiple ecosystems. These data advance our current understanding of the ecological consequences of eutrophication in the form of macroalgal blooms in different ecosystems. It also provides mechanistic links to microbial communities and biogeochemical processes not previously identified for shallow coastal estuaries. As human population and subsequent nutrient pollution increases in watersheds globally, ecological phenomenon such as eutrophication will only be intensified, and macroalgal communities will continue to dominate. Consequently, this dominance, especially during decomposition as shown here, can drive a multitude of subsequent stressors that can impact the entire ecosystem.