Implementing Machine Learning For Finance

DOWNLOAD
Download Implementing Machine Learning For Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Implementing Machine Learning For Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Implementing Machine Learning For Finance
DOWNLOAD
Author : Tshepo Chris Nokeri
language : en
Publisher: Apress
Release Date : 2021-05-27
Implementing Machine Learning For Finance written by Tshepo Chris Nokeri and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-27 with Computers categories.
Bring together machine learning (ML) and deep learning (DL) in financial trading, with an emphasis on investment management. This book explains systematic approaches to investment portfolio management, risk analysis, and performance analysis, including predictive analytics using data science procedures. The book introduces pattern recognition and future price forecasting that exerts effects on time series analysis models, such as the Autoregressive Integrated Moving Average (ARIMA) model, Seasonal ARIMA (SARIMA) model, and Additive model, and it covers the Least Squares model and the Long Short-Term Memory (LSTM) model. It presents hidden pattern recognition and market regime prediction applying the Gaussian Hidden Markov Model. The book covers the practical application of the K-Means model in stock clustering. It establishes the practical application of the Variance-Covariance method and Simulation method (using Monte Carlo Simulation) for value at risk estimation. It also includes market direction classification using both the Logistic classifier and the Multilayer Perceptron classifier. Finally, the book presents performance and risk analysis for investment portfolios. By the end of this book, you should be able to explain how algorithmic trading works and its practical application in the real world, and know how to apply supervised and unsupervised ML and DL models to bolster investment decision making and implement and optimize investment strategies and systems. What You Will Learn Understand the fundamentals of the financial market and algorithmic trading, as well as supervised and unsupervised learning models that are appropriate for systematic investment portfolio management Know the concepts of feature engineering, data visualization, and hyperparameter optimization Design, build, and test supervised and unsupervised ML and DL models Discover seasonality, trends, and market regimes, simulating a change in the market and investment strategy problems and predicting market direction and prices Structure and optimize an investment portfolio with preeminent asset classes and measure the underlying risk Who This Book Is For Beginning and intermediate data scientists, machine learning engineers, business executives, and finance professionals (such as investment analysts and traders)
Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21
Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Machine Learning In Finance
DOWNLOAD
Author : Matthew F. Dixon
language : en
Publisher: Springer Nature
Release Date : 2020-07-01
Machine Learning In Finance written by Matthew F. Dixon and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Business & Economics categories.
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Machine Learning For Finance
DOWNLOAD
Author : Saurav Singla
language : en
Publisher: BPB Publications
Release Date : 2021-01-05
Machine Learning For Finance written by Saurav Singla and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-05 with Computers categories.
Understand the essentials of Machine Learning and its impact in financial sector KEY FEATURESÊ _Explore the spectrum of machine learning and its usage. _Understand the NLP and Computer Vision and their use cases. _Understand the Neural Network, CNN, RNN and their applications. _ÊUnderstand the Reinforcement Learning and their applications. _Learn the rising application of Machine Learning in the Finance sector. Ê_Exposure to data mining, data visualization and data analytics. DESCRIPTION The fields of machining adapting, profound learning, and computerized reasoning are quickly extending and are probably going to keep on doing as such for a long time to come. There are many main impetuses for this, as quickly caught in this review. Now and again, the advancement has been emotional, opening new ways to deal with long-standing innovation challenges, for example, progresses in PC vision and picture investigation.Ê Ê The book demonstrates how to solve some of the most common issues in the financial industry.Ê The book addresses real-life problems faced by practitioners on a daily basis. The book explains how machine learning works on structured data, text, and images. You will cover the exploration of Nave Bayes, Normal Distribution, Clustering with Gaussian process, advanced neural network, sequence modeling, and reinforcement learning. Later chapters will discuss machine learning use cases in the finance sector and the implications of deep learning. The book ends with traditional machine learning algorithms. Ê Machine Learning has become very important in the finance industry, which is mostly used for better risk management and risk analysis. Better analysis leads to better decisions which lead to an increase in profit for financial institutions. Machine Learning to empower fintech to make massive profits by optimizing processes, maximizing efficiency, and increasing profitability. WHAT WILL YOU LEARN _ Ê Ê Ê You will grasp the most relevant techniques of Machine Learning for everyday use. _ Ê Ê Ê You will be confident in building and implementing ML algorithms. _ Ê Ê Ê Familiarize the adoption of Machine Learning for your business need. _ Ê Ê Ê Discover more advanced concepts applied in banking and other sectors today. _ Ê Ê Ê Build mastery skillset in designing smart AI applications including NLP, Computer Vision and Deep Learning. WHO THIS BOOK IS FORÊ Data Scientist, Machine Learning Engineers and Individuals who want to adopt machine learning in the financial domain. Practitioners are working in banks, asset management, hedge funds or working the first time in the finance domain. Individuals who want to learn about applications of machine learning in finance or individuals entering the fintech domain. TABLE OF CONTENTS 1.Introduction 2.Naive Bayes, Normal Distribution and Automatic Clustering Processes 3.Machine Learning for Data Structuring 4.Parsing Data Using NLP 5.Computer Vision 6.Neural Network, GBM and Gradient Descent 7.Sequence Modeling 8.Reinforcement Learning For Financial Markets 9.Finance Use Cases 10.Impact of Machine Learning on Fintech 11.Machine Learning in Finance 12.eKYC and Anti-Fraud Policy 13.Uses of Data Mining and Data Visualization 14.Advantages and Disadvantages of Machine Learning 15.Applications of Machine Learning in Other Industries 16.Ethical considerations in Artificial Intelligence 17.Artificial Intelligence in Banking 18.Common Machine Learning Algorithms 19.Frequently Asked Questions
Machine Learning Applications Using Python
DOWNLOAD
Author : Puneet Mathur
language : en
Publisher: Apress
Release Date : 2018-12-12
Machine Learning Applications Using Python written by Puneet Mathur and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.
Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. What You Will Learn Discover applied machine learning processes and principles Implement machine learning in areas of healthcare, finance, and retail Avoid the pitfalls of implementing applied machine learning Build Python machine learning examples in the three subject areas Who This Book Is For Data scientists and machine learning professionals.
Machine Learning And Data Science Blueprints For Finance
DOWNLOAD
Author : Hariom Tatsat
language : en
Publisher: O'Reilly Media
Release Date : 2020
Machine Learning And Data Science Blueprints For Finance written by Hariom Tatsat and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Finance categories.
Machine learning and data science will significantly transform the finance industry in the next few years. With this practical guide, professionals at hedge funds, investment and retail banks, and fintech firms will learn how to build ML algorithms crucial to this industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP).
Machine Learning For Financial Risk Management With Python
DOWNLOAD
Author : Abdullah Karasan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-12-07
Machine Learning For Financial Risk Management With Python written by Abdullah Karasan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.
Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models
Machine Learning For Algorithmic Trading Second Edition
DOWNLOAD
Author : Stefan Jansen
language : en
Publisher:
Release Date : 2020-07-31
Machine Learning For Algorithmic Trading Second Edition written by Stefan Jansen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Computers categories.
Machine Learning For Asset Managers
DOWNLOAD
Author : Marcos M. López de Prado
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-22
Machine Learning For Asset Managers written by Marcos M. López de Prado and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-22 with Business & Economics categories.
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.
Python For Finance Cookbook
DOWNLOAD
Author : Eryk Lewinson
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Python For Finance Cookbook written by Eryk Lewinson and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.