In Memory Computing

DOWNLOAD
Download In Memory Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get In Memory Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
In Memory Computing
DOWNLOAD
Author : Saeideh Shirinzadeh
language : en
Publisher: Springer
Release Date : 2019-05-22
In Memory Computing written by Saeideh Shirinzadeh and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Technology & Engineering categories.
This book describes a comprehensive approach for synthesis and optimization of logic-in-memory computing hardware and architectures using memristive devices, which creates a firm foundation for practical applications. Readers will get familiar with a new generation of computer architectures that potentially can perform faster, as the necessity for communication between the processor and memory is surpassed. The discussion includes various synthesis methodologies and optimization algorithms targeting implementation cost metrics including latency and area overhead as well as the reliability issue caused by short memory lifetime. Presents a comprehensive synthesis flow for the emerging field of logic-in-memory computing; Describes automated compilation of programmable logic-in-memory computer architectures; Includes several effective optimization algorithm also applicable to classical logic synthesis; Investigates unbalanced write traffic in logic-in-memory architectures and describes wear leveling approaches to alleviate it.
In Near Memory Computing
DOWNLOAD
Author : Daichi Fujiki
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2021-08-12
In Near Memory Computing written by Daichi Fujiki and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-12 with Computers categories.
This book provides a structured introduction of the key concepts and techniques that enable in-/near-memory computing. For decades, processing-in-memory or near-memory computing has been attracting growing interest due to its potential to break the memory wall. Near-memory computing moves compute logic near the memory, and thereby reduces data movement. Recent work has also shown that certain memories can morph themselves into compute units by exploiting the physical properties of the memory cells, enabling in-situ computing in the memory array. While in- and near-memory computing can circumvent overheads related to data movement, it comes at the cost of restricted flexibility of data representation and computation, design challenges of compute capable memories, and difficulty in system and software integration. Therefore, wide deployment of in-/near-memory computing cannot be accomplished without techniques that enable efficient mapping of data-intensive applications to such devices, without sacrificing accuracy or increasing hardware costs excessively. This book describes various memory substrates amenable to in- and near-memory computing, architectural approaches for designing efficient and reliable computing devices, and opportunities for in-/near-memory acceleration of different classes of applications.
Data Analytics With Hadoop
DOWNLOAD
Author : Benjamin Bengfort
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-06
Data Analytics With Hadoop written by Benjamin Bengfort and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06 with Computers categories.
Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark’s MLlib
In Memory Computing Hardware Accelerators For Data Intensive Applications
DOWNLOAD
Author : Baker Mohammad
language : en
Publisher: Springer Nature
Release Date : 2023-09-25
In Memory Computing Hardware Accelerators For Data Intensive Applications written by Baker Mohammad and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-25 with Technology & Engineering categories.
This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.
High Performance In Memory Computing With Apache Ignite
DOWNLOAD
Author : Shamim bhuiyan
language : en
Publisher: Lulu.com
Release Date : 2017-04-08
High Performance In Memory Computing With Apache Ignite written by Shamim bhuiyan and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-08 with Computers categories.
This book covers a verity of topics, including in-memory data grid, highly available service grid, streaming (event processing for IoT and fast data) and in-memory computing use cases from high-performance computing to get performance gains. The book will be particularly useful for those, who have the following use cases: 1) You have a high volume of ACID transactions in your system. 2) You have database bottleneck in your application and want to solve the problem. 3) You want to develop and deploy Microservices in a distributed fashion. 4) You have an existing Hadoop ecosystem (OLAP) and want to improve the performance of map/reduce jobs without making any changes in your existing map/reduce jobs. 5) You want to share Spark RDD directly in-memory (without storing the state into the disk) 7) You are planning to process continuous never-ending streams and complex events of data. 8) You want to use distributed computations in parallel fashion to gain high performance.
In Near Memory Computing
DOWNLOAD
Author : Daichi Fujiki
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
In Near Memory Computing written by Daichi Fujiki and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
This book provides a structured introduction of the key concepts and techniques that enable in-/near-memory computing. For decades, processing-in-memory or near-memory computing has been attracting growing interest due to its potential to break the memory wall. Near-memory computing moves compute logic near the memory, and thereby reduces data movement. Recent work has also shown that certain memories can morph themselves into compute units by exploiting the physical properties of the memory cells, enabling in-situ computing in the memory array. While in- and near-memory computing can circumvent overheads related to data movement, it comes at the cost of restricted flexibility of data representation and computation, design challenges of compute capable memories, and difficulty in system and software integration. Therefore, wide deployment of in-/near-memory computing cannot be accomplished without techniques that enable efficient mapping of data-intensive applications to such devices,without sacrificing accuracy or increasing hardware costs excessively. This book describes various memory substrates amenable to in- and near-memory computing, architectural approaches for designing efficient and reliable computing devices, and opportunities for in-/near-memory acceleration of different classes of applications.
Non Volatile In Memory Computing By Spintronics
DOWNLOAD
Author : Hao Yu
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Non Volatile In Memory Computing By Spintronics written by Hao Yu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.
In Memory Data Management
DOWNLOAD
Author : Hasso Plattner
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-05-14
In Memory Data Management written by Hasso Plattner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-14 with Business & Economics categories.
This book examines for the first time, the ways that in-memory computing is changing the way businesses are run. The authors describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business.
Non Volatile In Memory Computing By Spintronics
DOWNLOAD
Author : Hao Yu
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2016-12-02
Non Volatile In Memory Computing By Spintronics written by Hao Yu and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-02 with Computers categories.
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.
Reservoir Computing
DOWNLOAD
Author : Kohei Nakajima
language : en
Publisher: Springer Nature
Release Date : 2021-08-05
Reservoir Computing written by Kohei Nakajima and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-05 with Computers categories.
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.