Inference For Functional Data With Applications

DOWNLOAD
Download Inference For Functional Data With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inference For Functional Data With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Inference For Functional Data With Applications
DOWNLOAD
Author : Lajos Horváth
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-05-08
Inference For Functional Data With Applications written by Lajos Horváth and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-08 with Mathematics categories.
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
Introduction To Functional Data Analysis
DOWNLOAD
Author : Piotr Kokoszka
language : en
Publisher: CRC Press
Release Date : 2017-09-27
Introduction To Functional Data Analysis written by Piotr Kokoszka and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-27 with Mathematics categories.
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Geostatistical Functional Data Analysis
DOWNLOAD
Author : Jorge Mateu
language : en
Publisher: John Wiley & Sons
Release Date : 2021-12-13
Geostatistical Functional Data Analysis written by Jorge Mateu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-13 with Social Science categories.
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Analysis Of Variance For Functional Data
DOWNLOAD
Author : Jin-Ting Zhang
language : en
Publisher: CRC Press
Release Date : 2013-06-18
Analysis Of Variance For Functional Data written by Jin-Ting Zhang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-18 with Mathematics categories.
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l
Introduction To Functional Data Analysis
DOWNLOAD
Author : Piotr Kokoszka
language : en
Publisher: CRC Press
Release Date : 2017-09-27
Introduction To Functional Data Analysis written by Piotr Kokoszka and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-27 with Mathematics categories.
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Geostatistical Functional Data Analysis
DOWNLOAD
Author : Jorge Mateu
language : en
Publisher: John Wiley & Sons
Release Date : 2021-11-16
Geostatistical Functional Data Analysis written by Jorge Mateu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-16 with Social Science categories.
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Simultaneous Statistical Inference
DOWNLOAD
Author : Thorsten Dickhaus
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-01-23
Simultaneous Statistical Inference written by Thorsten Dickhaus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-23 with Science categories.
This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.
Cladag 2017 Book Of Short Papers
DOWNLOAD
Author : Francesca Greselin
language : en
Publisher: Universitas Studiorum
Release Date : 2017-09-29
Cladag 2017 Book Of Short Papers written by Francesca Greselin and has been published by Universitas Studiorum this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-29 with Mathematics categories.
This book is the collection of the Abstract / Short Papers submitted by the authors of the International Conference of The CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), held in Milan (Italy) on September 13-15, 2017.
Functional And High Dimensional Statistics And Related Fields
DOWNLOAD
Author : Germán Aneiros
language : en
Publisher: Springer Nature
Release Date : 2020-06-19
Functional And High Dimensional Statistics And Related Fields written by Germán Aneiros and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-19 with Mathematics categories.
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Flexible Nonparametric Curve Estimation
DOWNLOAD
Author : Hassan Doosti
language : en
Publisher: Springer Nature
Release Date : 2024-09-04
Flexible Nonparametric Curve Estimation written by Hassan Doosti and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-04 with Mathematics categories.
This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions. Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation. Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.