Information Retrieval And Social Media Mining

DOWNLOAD
Download Information Retrieval And Social Media Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Retrieval And Social Media Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Information Retrieval And Social Media Mining
DOWNLOAD
Author : María N. Moreno García
language : en
Publisher: MDPI
Release Date : 2021-03-09
Information Retrieval And Social Media Mining written by María N. Moreno García and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-09 with Technology & Engineering categories.
This book presents diverse contributions related to some of the latest advances in the field of personalization and recommender systems, as well as social media and sentiment analysis. The work comprises several articles that address different problems in these areas by means of recent techniques such as deep learning, methods to analyze the structure and the dynamics of social networks, and modern language processing approaches for sentiment analysis, among others. The proposals included in the book are representative of some highly topical research directions and cover different application domains where they have been validated. These go from the recommendation of hotels, movies, music, documents, or pharmacy cross-selling to sentiment analysis in the field of telemedicine and opinion mining on news, also including the study of social capital on social media and dynamics aspects of the Twitter social network.
Biomedical Data Mining For Information Retrieval
DOWNLOAD
Author : Sujata Dash
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-24
Biomedical Data Mining For Information Retrieval written by Sujata Dash and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Opinion Mining In Information Retrieval
DOWNLOAD
Author : Surbhi Bhatia
language : en
Publisher:
Release Date : 2020
Opinion Mining In Information Retrieval written by Surbhi Bhatia and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Artificial intelligence categories.
This book discusses in detail the latest trends in sentiment analysis,focusing on "how online reviews and feedback reflect the opinions of users and have led to a major shift in the decision-making process at organizations." Social networking has become essential in today's society. In the past, people's decisions to buy certain products (and companies' efforts to sell them) were largely based on advertisements, surveys, focus groups, consultants, and the opinions of friends and relatives. But now this is no longer limited to one's circle of friends, family or small surveys;it has spread globally to online social media in the form of blogs, posts, tweets, social networking sites, review sites and so on. Though not always easy, the transition from surveys to social media is certainly lucrative. Business analytical reports have shown that many organizations have improved their sales, marketing and strategy, setting up new policies and making decisions based on opinion mining techniques. .
Social Information Retrieval Systems Emerging Technologies And Applications For Searching The Web Effectively
DOWNLOAD
Author : Goh, Dion
language : en
Publisher: IGI Global
Release Date : 2007-10-31
Social Information Retrieval Systems Emerging Technologies And Applications For Searching The Web Effectively written by Goh, Dion and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-31 with Business & Economics categories.
The wealth of information accessible on the Internet has grown exponentially since its advent. This mass of content must be systemically sifted to glean pertinent data, and the utilization of the collective intelligence of other users, or social information retrieval, is an innovative, emerging technique. Social Information Retrieval Systems: Emerging Technologies & Applications for Searching the Web Effectively provides relevant content in the areas of information retrieval systems, services, and research; covering topics such as social tagging, collaborative querying, social network analysis, subjective relevance judgments, and collaborative filtering. Answering the increasing demand for authoritative resources on Internet technologies, this Premier Reference Source will make an indispensable addition to any library collection.
Extracting Mining And Predicting Users Interests From Social Media
DOWNLOAD
Author : Fattane Zarrinkalam
language : en
Publisher:
Release Date : 2020-11-05
Extracting Mining And Predicting Users Interests From Social Media written by Fattane Zarrinkalam and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-05 with categories.
Mining user interests from user behavioral data is critical for many applications. Based on user interests, service providers like advertisers can significantly reduce service delivery costs by offering the most relevant products to their customers. The challenge of accurately and efficiently identifying user interests has been the subject of increasing attention for several years. With the emergence and growing popularity of social media, many users are extensively engaged in social media applications to express their feelings and views about a wide variety of social events/topics as they happen in real time. The abundance of user generated content on social media provides the opportunity to build models that are able to accurately and effectively extract, mine, and predict users' interests with the hopes of enabling more effective user engagement, better quality delivery of appropriate services, and higher user satisfaction. While traditional methods for building user profiles relied on AI-based preference elicitation techniques that could have been considered intrusive and undesirable by the users, more recent advances are focused on a non-intrusive yet accurate way of determining users' interests and preferences. In this monograph, the authors cover five important subjects related to the mining of user interests from social media: (1) the foundations of social user interest modeling, (2) techniques that have been adopted or proposed for mining user interests, (3) different evaluation methodologies and benchmark datasets, (4) different applications that have been taking advantage of user interest mining from social media platforms, and (5) existing challenges, open research questions, and opportunities for further work. The monograph is a valuable resource for those who have familiarity with social media mining and the basics of information retrieval (IR) techniques.
Social Media Mining
DOWNLOAD
Author : Reza Zafarani
language : en
Publisher: Cambridge University Press
Release Date : 2014-04-28
Social Media Mining written by Reza Zafarani and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-28 with Computers categories.
Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.
Experiment And Evaluation In Information Retrieval Models
DOWNLOAD
Author : K. Latha
language : en
Publisher: CRC Press
Release Date : 2017-07-28
Experiment And Evaluation In Information Retrieval Models written by K. Latha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-28 with Computers categories.
Experiment and Evaluation in Information Retrieval Models explores different algorithms for the application of evolutionary computation to the field of information retrieval (IR). As well as examining existing approaches to resolving some of the problems in this field, results obtained by researchers are critically evaluated in order to give readers a clear view of the topic. In addition, this book covers Algorithmic Solutions to the Problems in Advanced IR Concepts, including Feature Selection for Document Ranking, web page classification and recommendation, Facet Generation for Document Retrieval, Duplication Detection and seeker satisfaction in question answering community Portals. Written with students and researchers in the field on information retrieval in mind, this book is also a useful tool for researchers in the natural and social sciences interested in the latest developments in the fast-moving subject area. Key features: Focusing on recent topics in Information Retrieval research, Experiment and Evaluation in Information Retrieval Models explores the following topics in detail: Searching in social media Using semantic annotations Ranking documents based on Facets Evaluating IR systems offline and online The role of evolutionary computation in IR Document and term clustering, Image retrieval Design of user profiles for IR Web page classification and recommendation Relevance feedback approach for Document and image retrieval
Mastering Social Media Mining With Python
DOWNLOAD
Author : Marco Bonzanini
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-07-29
Mastering Social Media Mining With Python written by Marco Bonzanini and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Computers categories.
Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.
Web Data Mining
DOWNLOAD
Author : Bing Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-25
Web Data Mining written by Bing Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-25 with Computers categories.
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
Introduction To Information Retrieval
DOWNLOAD
Author : Christopher D. Manning
language : en
Publisher: Cambridge University Press
Release Date : 2008-07-07
Introduction To Information Retrieval written by Christopher D. Manning and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-07 with Computers categories.
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.