Information Theoretic Learning

DOWNLOAD
Download Information Theoretic Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Information Theoretic Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Information Theoretic Learning
DOWNLOAD
Author : Jose C. Principe
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-04-06
Information Theoretic Learning written by Jose C. Principe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-06 with Computers categories.
This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.
Information Theoretic Learning
DOWNLOAD
Author : Jose C. Principe
language : en
Publisher: Springer
Release Date : 2010-04-15
Information Theoretic Learning written by Jose C. Principe and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-15 with Computers categories.
This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.
Information Theory Inference And Learning Algorithms
DOWNLOAD
Author : David J. C. MacKay
language : en
Publisher: Cambridge University Press
Release Date : 2003-09-25
Information Theory Inference And Learning Algorithms written by David J. C. MacKay and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-25 with Computers categories.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Information Theory And Statistical Learning
DOWNLOAD
Author : Frank Emmert-Streib
language : en
Publisher: Springer Science & Business Media
Release Date : 2009
Information Theory And Statistical Learning written by Frank Emmert-Streib and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Computers categories.
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
An Information Theoretic Approach To Neural Computing
DOWNLOAD
Author : Gustavo Deco
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Information Theoretic Approach To Neural Computing written by Gustavo Deco and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Neural networks provide a powerful new technology to model and control nonlinear and complex systems. In this book, the authors present a detailed formulation of neural networks from the information-theoretic viewpoint. They show how this perspective provides new insights into the design theory of neural networks. In particular they show how these methods may be applied to the topics of supervised and unsupervised learning including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from several different scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this to be a very valuable introduction to this topic.
Robust Recognition Via Information Theoretic Learning
DOWNLOAD
Author : Ran He
language : en
Publisher: Springer
Release Date : 2014-08-28
Robust Recognition Via Information Theoretic Learning written by Ran He and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-28 with Computers categories.
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26
The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Information Theoretic Learning
DOWNLOAD
Author :
language : en
Publisher: Springer
Release Date : 2010
Information Theoretic Learning written by and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.
Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19
Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Information Theory In Computer Vision And Pattern Recognition
DOWNLOAD
Author : Francisco Escolano Ruiz
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-14
Information Theory In Computer Vision And Pattern Recognition written by Francisco Escolano Ruiz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-14 with Computers categories.
Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...). This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to a cross-fertilization of both areas.