Integrability Of Dynamical Systems Algebra And Analysis

DOWNLOAD
Download Integrability Of Dynamical Systems Algebra And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integrability Of Dynamical Systems Algebra And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Integrability Of Dynamical Systems Algebra And Analysis
DOWNLOAD
Author : Xiang Zhang
language : en
Publisher: Springer
Release Date : 2017-03-30
Integrability Of Dynamical Systems Algebra And Analysis written by Xiang Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-30 with Mathematics categories.
This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.
Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds
DOWNLOAD
Author : A.K. Prykarpatsky
language : en
Publisher: Springer
Release Date : 1998-06-30
Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds written by A.K. Prykarpatsky and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-06-30 with Mathematics categories.
Noting that their research is not yet completed, Prykarpatsky (mathematics, U. of Mining and Metallurgy, Cracow, Poland and mechanics and mathematics, NAS, Lviv, Ukraine) and Mykytiuk (mechanics and mathematics, NAS and Lviv Polytechnic State U., Ukraine) describe some of the ideas of Lie algebra that underlie many of the comprehensive integrability theories of nonlinear dynamical systems on manifolds. For each case they analyze, they separate the basic algebraic essence responsible for the complete integrability and explore how it is also in some sense characteristic for all of them. They cover systems with homogeneous configuration spaces, geometric quantization, structures on manifolds, algebraic methods of quantum statistical mechanics and their applications, and algebraic and differential geometric aspects related to infinite-dimensional functional manifolds. They have not indexed their work.
Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis
DOWNLOAD
Author : Denis Blackmore
language : en
Publisher: World Scientific
Release Date : 2011-03-04
Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis written by Denis Blackmore and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-04 with Mathematics categories.
This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.
Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds
DOWNLOAD
Author : A.K. Prykarpatsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-09
Algebraic Integrability Of Nonlinear Dynamical Systems On Manifolds written by A.K. Prykarpatsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-09 with Science categories.
In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).
Integrability And Nonintegrability Of Dynamical Systems
DOWNLOAD
Author : Alain Goriely
language : en
Publisher: World Scientific
Release Date : 2001
Integrability And Nonintegrability Of Dynamical Systems written by Alain Goriely and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.
Dynamical Systems Vii
DOWNLOAD
Author : V.I. Arnol'd
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-12-06
Dynamical Systems Vii written by V.I. Arnol'd and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-12-06 with Mathematics categories.
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Differential Galois Theory And Non Integrability Of Hamiltonian Systems
DOWNLOAD
Author : Juan J. Morales Ruiz
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-08-01
Differential Galois Theory And Non Integrability Of Hamiltonian Systems written by Juan J. Morales Ruiz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-08-01 with Mathematics categories.
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)
Integrability And Nonintegrability Of Dynamical Systems
DOWNLOAD
Author : Alain Goriely
language : en
Publisher: World Scientific
Release Date : 2001-08-29
Integrability And Nonintegrability Of Dynamical Systems written by Alain Goriely and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-29 with Science categories.
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.
Geometry And Dynamics Of Integrable Systems
DOWNLOAD
Author : Alexey Bolsinov
language : en
Publisher: Birkhäuser
Release Date : 2016-10-27
Geometry And Dynamics Of Integrable Systems written by Alexey Bolsinov and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-27 with Mathematics categories.
Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mirror symmetry). As such, the book will appeal to experts with a wide range of backgrounds.
New Trends In Quantum Integrable Systems
DOWNLOAD
Author : Boris Feigin
language : en
Publisher: World Scientific
Release Date : 2010-10-29
New Trends In Quantum Integrable Systems written by Boris Feigin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-29 with Mathematics categories.
The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.