[PDF] Integrable Systems Geometry And Topology - eBooks Review

Integrable Systems Geometry And Topology


Integrable Systems Geometry And Topology
DOWNLOAD

Download Integrable Systems Geometry And Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integrable Systems Geometry And Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Integrable Hamiltonian Systems


Integrable Hamiltonian Systems
DOWNLOAD
Author : A.V. Bolsinov
language : en
Publisher: CRC Press
Release Date : 2004-02-25

Integrable Hamiltonian Systems written by A.V. Bolsinov and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-02-25 with Mathematics categories.


Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors,



Integrable Systems Geometry And Topology


Integrable Systems Geometry And Topology
DOWNLOAD
Author : Chuu-lian Terng
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

Integrable Systems Geometry And Topology written by Chuu-lian Terng and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and theirrelations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu,and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrödinger equation, the Schrödinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The bookprovides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians. Information for our distributors: Titles in this series are copublished with International Press, Cambridge, MA.



Symplectic Geometry Of Integrable Hamiltonian Systems


Symplectic Geometry Of Integrable Hamiltonian Systems
DOWNLOAD
Author : Michèle Audin
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Symplectic Geometry Of Integrable Hamiltonian Systems written by Michèle Audin and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).



Topology Geometry Integrable Systems And Mathematical Physics


Topology Geometry Integrable Systems And Mathematical Physics
DOWNLOAD
Author : V. M. Buchstaber
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-11-18

Topology Geometry Integrable Systems And Mathematical Physics written by V. M. Buchstaber and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-18 with Mathematics categories.


Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.



Spinning Tops


Spinning Tops
DOWNLOAD
Author : M. Audin
language : en
Publisher: Cambridge University Press
Release Date : 1999-11-13

Spinning Tops written by M. Audin and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-11-13 with Mathematics categories.


Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.



Dynamical Systems Vii


Dynamical Systems Vii
DOWNLOAD
Author : V.I. Arnol'd
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-12-06

Dynamical Systems Vii written by V.I. Arnol'd and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-12-06 with Mathematics categories.


A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.



Integrable Systems


Integrable Systems
DOWNLOAD
Author : N. J. Hitchin
language : en
Publisher: Oxford University Press
Release Date : 1999-03-18

Integrable Systems written by N. J. Hitchin and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-03-18 with Mathematics categories.


This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The authors are internationally renowned both as researchers and expositors, and the book is written in an informal and accessible style.



Differential Geometry And Mathematical Physics


Differential Geometry And Mathematical Physics
DOWNLOAD
Author : Gerd Rudolph
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-09

Differential Geometry And Mathematical Physics written by Gerd Rudolph and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-09 with Science categories.


Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.



Lectures On Symplectic Geometry


Lectures On Symplectic Geometry
DOWNLOAD
Author : Ana Cannas da Silva
language : en
Publisher: Springer
Release Date : 2004-10-27

Lectures On Symplectic Geometry written by Ana Cannas da Silva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-10-27 with Mathematics categories.


The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.