Intelligent Data Analysis

DOWNLOAD
Download Intelligent Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intelligent Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2007-06-07
Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-07 with Computers categories.
This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.
Guide To Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-23
Guide To Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-23 with Computers categories.
Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Advances In Intelligent Data Analysis And Applications
DOWNLOAD
Author : Jeng-Shyang Pan
language : en
Publisher: Springer Nature
Release Date : 2021-11-25
Advances In Intelligent Data Analysis And Applications written by Jeng-Shyang Pan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-25 with Technology & Engineering categories.
This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15–18, 2019, Arad, Romania. This edition is technically co-sponsored by “Aurel Vlaicu” University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang’an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications.
Intelligent Data Analysis For Biomedical Applications
DOWNLOAD
Author : D. Jude Hemanth
language : en
Publisher: Academic Press
Release Date : 2019-03-15
Intelligent Data Analysis For Biomedical Applications written by D. Jude Hemanth and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-15 with Computers categories.
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems
Intelligent Data Analysis And Applications
DOWNLOAD
Author : Jeng-Shyang Pan
language : en
Publisher: Springer
Release Date : 2016-10-19
Intelligent Data Analysis And Applications written by Jeng-Shyang Pan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-19 with Technology & Engineering categories.
This book gathers papers presented at the ECC 2016, the Third Euro-China Conference on Intelligent Data Analysis and Applications, which was held in Fuzhou City, China from November 7 to 9, 2016. The aim of the ECC is to provide an internationally respected forum for scientific research in the broad areas of intelligent data analysis, computational intelligence, signal processing, and all associated applications of artificial intelligence (AI). The third installment of the ECC was jointly organized by Fujian University of Technology, China, and VSB-Technical University of Ostrava, Czech Republic. The conference was co-sponsored by Taiwan Association for Web Intelligence Consortium, and Immersion Co., Ltd.
Computational Intelligent Data Analysis For Sustainable Development
DOWNLOAD
Author : Ting Yu
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Computational Intelligent Data Analysis For Sustainable Development written by Ting Yu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Business & Economics categories.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
Guide To Intelligent Data Science
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer Nature
Release Date : 2020-08-06
Guide To Intelligent Data Science written by Michael R. Berthold and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-06 with Computers categories.
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Intelligent Data Analysis For Covid 19 Pandemic
DOWNLOAD
Author : M. Niranjanamurthy
language : en
Publisher: Springer
Release Date : 2022-06-24
Intelligent Data Analysis For Covid 19 Pandemic written by M. Niranjanamurthy and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-24 with Technology & Engineering categories.
This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details.
Big Data Analytics For Sensor Network Collected Intelligence
DOWNLOAD
Author : Hui-Huang Hsu
language : en
Publisher: Morgan Kaufmann
Release Date : 2017-02-02
Big Data Analytics For Sensor Network Collected Intelligence written by Hui-Huang Hsu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-02 with Computers categories.
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Intelligent Data Analysis In Medicine And Pharmacology
DOWNLOAD
Author : Nada Lavrač
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Intelligent Data Analysis In Medicine And Pharmacology written by Nada Lavrač and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Intelligent data analysis, data mining and knowledge discovery in databases have recently gained the attention of a large number of researchers and practitioners. This is witnessed by the rapidly increasing number of submissions and participants at related conferences and workshops, by the emergence of new journals in this area (e.g., Data Mining and Knowledge Discovery, Intelligent Data Analysis, etc.), and by the increasing number of new applications in this field. In our view, the awareness of these challenging research fields and emerging technologies has been much larger in industry than in medicine and pharmacology. The main purpose of this book is to present the various techniques and methods that are available for intelligent data analysis in medicine and pharmacology, and to present case studies of their application. Intelligent Data Analysis in Medicine and Pharmacology consists of selected (and thoroughly revised) papers presented at the First International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-96) held in Budapest in August 1996 as part of the 12th European Conference on Artificial Intelligence (ECAI-96), IDAMAP-96 was organized with the motivation to gather scientists and practitioners interested in computational data analysis methods applied to medicine and pharmacology, aimed at narrowing the increasing gap between excessive amounts of data stored in medical and pharmacological databases on the one hand, and the interpretation, understanding and effective use of stored data on the other hand. Besides the revised Workshop papers, the book contains a selection of contributions by invited authors. The expected readership of the book is researchers and practitioners interested in intelligent data analysis, data mining, and knowledge discovery in databases, particularly those who are interested in using these technologies in medicine and pharmacology. Researchers and students in artificial intelligence and statistics should find this book of interest as well. Finally, much of the presented material will be interesting to physicians and pharmacologists challenged by new computational technologies, or simply in need of effectively utilizing the overwhelming volumes of data collected as a result of improved computer support in their daily professional practice.