[PDF] Interpreting Machine Learning Models - eBooks Review

Interpreting Machine Learning Models


Interpreting Machine Learning Models
DOWNLOAD

Download Interpreting Machine Learning Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interpreting Machine Learning Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Interpreting Machine Learning Models


Interpreting Machine Learning Models
DOWNLOAD
Author : Anirban Nandi
language : en
Publisher: Apress
Release Date : 2021-12-16

Interpreting Machine Learning Models written by Anirban Nandi and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-16 with Computers categories.


Understand model interpretability methods and apply the most suitable one for your machine learning project. This book details the concepts of machine learning interpretability along with different types of explainability algorithms. You’ll begin by reviewing the theoretical aspects of machine learning interpretability. In the first few sections you’ll learn what interpretability is, what the common properties of interpretability methods are, the general taxonomy for classifying methods into different sections, and how the methods should be assessed in terms of human factors and technical requirements. Using a holistic approach featuring detailed examples, this book also includes quotes from actual business leaders and technical experts to showcase how real life users perceive interpretability and its related methods, goals, stages, and properties. Progressing through the book, you’ll dive deep into the technical details of the interpretability domain. Starting off with the general frameworks of different types of methods, you’ll use a data set to see how each method generates output with actual code and implementations. These methods are divided into different types based on their explanation frameworks, with some common categories listed as feature importance based methods, rule based methods, saliency maps methods, counterfactuals, and concept attribution. The book concludes by showing how data effects interpretability and some of the pitfalls prevalent when using explainability methods. What You’ll Learn Understand machine learning model interpretability Explore the different properties and selection requirements of various interpretability methods Review the different types of interpretability methods used in real life by technical experts Interpret the output of various methods and understand the underlying problems Who This Book Is For Machine learning practitioners, data scientists and statisticians interested in making machine learning models interpretable and explainable; academic students pursuing courses of data science and business analytics.



Interpretable Machine Learning With Python


Interpretable Machine Learning With Python
DOWNLOAD
Author : Serg Masís
language : en
Publisher:
Release Date : 2021-03-26

Interpretable Machine Learning With Python written by Serg Masís and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-26 with categories.


Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models Key Features: Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book Description: Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models. The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What You Will Learn: Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for: This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.



Understanding And Interpreting Machine Learning In Medical Image Computing Applications


Understanding And Interpreting Machine Learning In Medical Image Computing Applications
DOWNLOAD
Author : Danail Stoyanov
language : en
Publisher: Springer
Release Date : 2018-10-23

Understanding And Interpreting Machine Learning In Medical Image Computing Applications written by Danail Stoyanov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Computers categories.


This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher:
Release Date : 2022

Interpretable Machine Learning written by Christoph Molnar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Machine learning categories.


"Machine learning has great potential for improving products, processes and research. But computers usually do not explain their predictions which is a barrier to the adoption of machine learning. This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. The focus of the book is on model-agnostic methods for interpreting black box models such as feature importance and accumulated local effects, and explaining individual predictions with Shapley values and LIME. In addition, the book presents methods specific to deep neural networks. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project. Reading the book is recommended for machine learning practitioners, data scientists, statisticians, and anyone else interested in making machine learning models interpretable."--Cover.



Visual Information Communication


Visual Information Communication
DOWNLOAD
Author : Mao Lin Huang
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-20

Visual Information Communication written by Mao Lin Huang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-20 with Computers categories.


Visual communication through graphical and sign languages has long been conducted among human beings of different backgrounds and cultures, and in recent decades between human and machine. In today's digital world, visual information is typically encoded with various metaphors commonly used in daily life to facilitate rapid comprehension and easy analysis during the communication process. Visual information communication generally encompasses information visualization, graphical user-interfaces, visual analytics, visual languages and multi-media processing. It has been successfully employed in knowledge discovery, end-user programming, modeling, rapid systems prototyping, education, and design activities by people of many disciplines including architects, artists, children, engineers, and scientists. In addition, visual information is increasingly being used to facilitate human-human communication through the Internet and Web technology, and electronic mobile devices. This manuscript provides the cutting-edge techniques, approaches and the latest ongoing researches in the context of visual information communication. It is a collection of 24 chapters selected from more than 60 submissions to the VINCI'09 - 2009 Visual Information Communications International Conference, that is held in Sydney Australia, September 2009. These chapters were selected through a stringent review process to ensure their high standard in quality, significance and relevance. Each chapter was reviewed by at least two international Program Committee members of VINCI’09. The book covers a broad range of contents in five key sub-areas of visual information communication, including.



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Explainable Ai Xai Making Machine Learning Models Interpretable And Trustworthy Cloud Computing


Explainable Ai Xai Making Machine Learning Models Interpretable And Trustworthy Cloud Computing
DOWNLOAD
Author : Amit Vyas
language : en
Publisher: Xoffencer international book publication house
Release Date : 2024-05-30

Explainable Ai Xai Making Machine Learning Models Interpretable And Trustworthy Cloud Computing written by Amit Vyas and has been published by Xoffencer international book publication house this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-30 with Computers categories.


Both explainable artificial intelligence (XAI) and cloud computing are vital components because they both play a significant part in the creation of the landscape of artificial intelligence (AI) and computing infrastructure. XAI and cloud computing are two of the most important pillars in the world of current technology. The purpose of this introduction is to provide an overview of the fundamental concepts behind both Explainable AI and cloud computing. In this section, we will study the relevance of these notions, as well as their applications and the synergies that they offer. A solution that satisfies the critical requirement for interpretability and transparency in artificial intelligence systems is referred to as explainable artificial intelligence, or XAI for short. Understanding the method by which artificial intelligence algorithms arrive at conclusions is of the highest significance, particularly in sensitive industries such as healthcare, finance, and law. This is because the algorithms are growing more intricate and prevalent, and it is becoming increasingly important to understand how they arrive at their results. XAI techniques are intended to give insights into the inner workings and reasoning processes of artificial intelligence models, with the purpose of demystifying the "black box" nature of these models. XAI approaches are aimed to deliver these insights. In addition to allowing stakeholders to detect biases or mistakes and ensure compliance with regulations, increasing the interpretability of artificial intelligence systems enables stakeholders to have a greater degree of trust in these systems. The provisioning, administration, and distribution of computer resources are all fundamentally transformed by cloud computing, which is regarded to be a breakthrough technology. Cloud computing is also known as utility computing. The term "cloud computing" refers to the practice of storing, managing, and processing data through the utilization of a network of distant servers that are located on the Internet. This is in contrast to the conventional method of computing, which is dependent on the infrastructure and servers located locally. This technology offers organizations unrivaled scalability, flexibility, and cost-efficiency, making it possible for them to use computer resources on demand without the trouble of managing physical infrastructure.



Personalized Machine Learning


Personalized Machine Learning
DOWNLOAD
Author : Julian McAuley
language : en
Publisher: Cambridge University Press
Release Date : 2022-02-03

Personalized Machine Learning written by Julian McAuley and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-03 with Computers categories.


Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.



Practical Machine Learning With R


Practical Machine Learning With R
DOWNLOAD
Author : Carsten Lange
language : en
Publisher: CRC Press
Release Date : 2024-05-20

Practical Machine Learning With R written by Carsten Lange and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-20 with Mathematics categories.


This textbook is a comprehensive guide to machine learning and artificial intelligence tailored for students in business and economics. It takes a hands-on approach to teach machine learning, emphasizing practical applications over complex mathematical concepts. Students are not required to have advanced mathematics knowledge such as matrix algebra or calculus. The author introduces machine learning algorithms, utilizing the widely used R language for statistical analysis. Each chapter includes examples, case studies, and interactive tutorials to enhance understanding. No prior programming knowledge is needed. The book leverages the tidymodels package, an extension of R, to streamline data processing and model workflows. This package simplifies commands, making the logic of algorithms more accessible by minimizing programming syntax hurdles. The use of tidymodels ensures a unified experience across various machine learning models. With interactive tutorials that students can download and follow along at their own pace, the book provides a practical approach to apply machine learning algorithms to real-world scenarios. In addition to the interactive tutorials, each chapter includes a Digital Resources section, offering links to articles, videos, data, and sample R code scripts. A companion website further enriches the learning and teaching experience: https://ai.lange-analytics.com. This book is not just a textbook; it is a dynamic learning experience that empowers students and instructors alike with a practical and accessible approach to machine learning in business and economics. Key Features: Unlocks machine learning basics without advanced mathematics — no calculus or matrix algebra required. Demonstrates each concept with R code and real-world data for a deep understanding — no prior programming knowledge is needed. Bridges the gap between theory and real-world applications with hands-on interactive projects and tutorials in every chapter, guided with hints and solutions. Encourages continuous learning with chapter-specific online resources—video tutorials, R-scripts, blog posts, and an online community. Supports instructors through a companion website that includes customizable materials such as slides and syllabi to fit their specific course needs.