Interval Valued Trapezoidal Neutrosophic Set For Prioritization Of Non Functional Requirements

DOWNLOAD
Download Interval Valued Trapezoidal Neutrosophic Set For Prioritization Of Non Functional Requirements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interval Valued Trapezoidal Neutrosophic Set For Prioritization Of Non Functional Requirements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Interval Valued Trapezoidal Neutrosophic Set For Prioritization Of Non Functional Requirements
DOWNLOAD
Author : Kiran Khatter
language : en
Publisher: Infinite Study
Release Date :
Interval Valued Trapezoidal Neutrosophic Set For Prioritization Of Non Functional Requirements written by Kiran Khatter and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
This paper discusses the trapezoidal fuzzy number(TrFN); Interval-valued intuitionistic fuzzy number(IVIFN); neutrosophic set and its operational laws; and, trapezoidal neutrosophic set(TrNS) and its operational laws. Based on the combination of IVIFN and TrNS, an Interval Valued Trapezoidal Neutrosophic Set (IVTrNS) is proposed followed by its operational laws. The paper also presents the score and accuracy functions for the proposed Interval Valued Trapezoidal Neutrosophic Number (IVTrNN). Then, an interval valued trapezoidal neutrosophic weighted arithmetic averaging (IVTrNWAA) operator is introduced to combine the trapezoidal information which is neutrosophic and in the unit interval of real numbers. Finally, a method is developed to handle the problems in the multi attribute decision making(MADM) environment using IVTrNWAA operator followed by a numerical example of NFRs prioritization to illustrate the relevance of the developed method.
Interval Valued Neutrosophic Linear Programming With Trapezoidal Numbers
DOWNLOAD
Author : Stephy Stephen
language : en
Publisher: Infinite Study
Release Date :
Interval Valued Neutrosophic Linear Programming With Trapezoidal Numbers written by Stephy Stephen and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
In the real world problems, we are always dealing with uncertainty in almost all fields of approach. Neutrosophic sets helps us to deal with problems where inconsistent data are available. Application of Neutrosophic sets to real world problems, which are the generalized form of fuzzy sets is a platform where we can overcome this concept of uncertainty and obtain optimal results which can be relied on. In this paper, interval valued neutrosophic numbers are used to take into account the uncertainty in a still deeper way and Interval valued neutrosophic linear programming problem is solved with the help of the proposed ranking function and optimal results are obtained.
Neutrosophic Sets And Systems Vol 51 2022
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-09-01
Neutrosophic Sets And Systems Vol 51 2022 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
Geometric Operators Based On Linguistic Interval Valued Intuitionistic Neutrosophic Fuzzy Number And Their Application In Decision Making
DOWNLOAD
Author : Fahmi Aliya
language : en
Publisher: Infinite Study
Release Date :
Geometric Operators Based On Linguistic Interval Valued Intuitionistic Neutrosophic Fuzzy Number And Their Application In Decision Making written by Fahmi Aliya and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
The paper aims to give some new kinds of operational laws named as neutrality addition and scalar multiplication for the pairs of linguistic interval-valued intuitionistic neutrosophic fuzzy number. The main idea behind these operations is to include the linguistic interval-valued intuitionistic neutrosophic fuzzy number of the decision-maker and score function. We define the linguistic interval-valued intuitionistic neutrosophic fuzzy number and operational laws. We introduce the three geometric operators including, linguistic interval-valued intuitionistic neutrosophic fuzzy weighted geometric operator, linguistic interval-valued intuitionistic neutrosophic fuzzy ordered weighted geometric operator and linguistic interval-valued intuitionistic neutrosophic fuzzy weighted hybrid geometric operator.
Neutrosophic Algebraic Structures And Their Applications
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-08-01
Neutrosophic Algebraic Structures And Their Applications written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-01 with Mathematics categories.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
Neutrosophic Sets And Systems Vol 60 2023
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2023-10-15
Neutrosophic Sets And Systems Vol 60 2023 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-15 with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-15
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Mathematics categories.
This book represents the fourth volume in the series Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of the HyperUncertain Set, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent complexity of real-world uncertainties. At the heart of this series lies combinatorics and set theory—cornerstones of mathematics that address the study of counting, arrangements, and the relationships between collections under defined rules. Traditionally, combinatorics has excelled in solving problems involving uncertainty, while advancements in set theory have expanded its scope to include powerful constructs like fuzzy and neutrosophic sets. These advanced sets bring new dimensions to uncertainty modeling by capturing not just binary truth but also indeterminacy and falsity. In this fourth volume, the integration of set theory with graph theory takes center stage, culminating in "graphized" structures such as hypergraphs and superhypergraphs. These structures, paired with innovations like Neutrosophic Oversets, Undersets, Offsets, and the Nonstandard Real Set, extend the boundaries of mathematical abstraction. This fusion of combinatorics, graph theory, and uncertain set theory creates a rich foundation for addressing the multidimensional and hierarchical uncertainties prevalent in both theoretical and applied domains. The book is structured into thirteen chapters, each contributing unique perspectives and advancements in the realm of HyperUncertain Sets and their related frameworks. The first chapter (Advancing Traditional Set Theory with Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets) explores the evolution of classical set theory to better address the complexity and ambiguity of real-world phenomena. By introducing hierarchical structures like hyperstructures and superhyperstructures—created through iterative applications of power sets—it lays the groundwork for more abstract and adaptable mathematical tools. The focus is on extending three foundational frameworks: Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets into their hyperforms: Hyperfuzzy Sets, Hyperneutrosophic Sets, and Hyperplithogenic Sets. These advanced concepts are applied across diverse fields such as statistics, clustering, evolutionary theory, topology, decision-making, probability, and language theory. The goal is to provide a robust platform for future research in this expanding area of study. The second chapter (Applications and Mathematical Properties of Hyperneutrosophic and SuperHyperneutrosophic Sets) extends the work on Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets by delving into their advanced applications and mathematical foundations. Building on prior research, it specifically examines Hyperneutrosophic and SuperHyperneutrosophic Sets, exploring their integration into: Neutrosophic Logic, Cognitive Maps,Graph Neural Networks, Classifiers, and Triplet Groups. The chapter also investigates their mathematical properties and applicability in addressing uncertainties and complexities inherent in various domains. These insights aim to inspire innovative uses of hypergeneralized sets in modern theoretical and applied research. The third chapter (New Extensions of Hyperneutrosophic Sets – Bipolar, Pythagorean, Double-Valued, and Interval-Valued Sets) studies advanced variations of Neutrosophic Sets, a mathematical framework defined by three membership functions: truth (T), indeterminacy (I), and falsity (F). By leveraging the concepts of Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets. These extensions address increasingly complex scenarios, and a brief analysis is provided to explore their potential applications and mathematical underpinnings. Building on prior research, the fourth chapter (Hyperneutrosophic Extensions of Complex, Single-Valued Triangular, Fermatean, and Linguistic Sets) expands on Neutrosophic Set theory by incorporating recent advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets. The study focuses on extending: Complex Neutrosophic Sets, Single-Valued Triangular Neutrosophic Sets, Fermatean Neutrosophic Sets, and Linguistic Neutrosophic Sets. The analysis highlights the mathematical structures of these hyperextensions and explores their connections with existing set-theoretic concepts, offering new insights into managing uncertainty in multidimensional challenges. The fifth chapter (Advanced Extensions of Hyperneutrosophic Sets – Dynamic, Quadripartitioned, Pentapartitioned, Heptapartitioned, and m-Polar) delves deeper into the evolution of Neutrosophic Sets by exploring advanced frameworks designed for even more intricate applications. New extensions include: Dynamic Neutrosophic Sets, Quadripartitioned Neutrosophic Sets, Pentapartitioned Neutrosophic Sets, Heptapartitioned Neutrosophic Sets, and m-Polar Neutrosophic Sets. These developments build upon foundational research and aim to provide robust tools for addressing multidimensional and highly nuanced problems. The sixth chapter (Advanced Extensions of Hyperneutrosophic Sets – Cubic, Trapezoidal, q-Rung Orthopair, Overset, Underset, and Offset) builds upon the Neutrosophic framework, which employs truth (T), indeterminacy (I), and falsity (F) to address uncertainty. Leveraging advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Cubic Neutrosophic Sets, Trapezoidal Neutrosophic Sets, q-Rung Orthopair Neutrosophic Sets, Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets. The chapter provides a brief analysis of these new set types, exploring their properties and potential applications in solving multidimensional problems. The seventh chapter (Specialized Classes of Hyperneutrosophic Sets – Support, Paraconsistent, and Faillibilist Sets) delves into unique classes of Neutrosophic Sets extended through Hyperneutrosophic and SuperHyperneutrosophic frameworks to tackle advanced theoretical challenges. The study introduces and extends: Support Neutrosophic Sets, Neutrosophic Intuitionistic Sets, Neutrosophic Paraconsistent Sets, Neutrosophic Faillibilist Sets, Neutrosophic Paradoxist and Pseudo-Paradoxist Sets, Neutrosophic Tautological and Nihilist Sets, Neutrosophic Dialetheist Sets, and Neutrosophic Trivialist Sets. These extensions address highly nuanced aspects of uncertainty, further advancing the theoretical foundation of Neutrosophic mathematics. The eight chapter (MultiNeutrosophic Sets and Refined Neutrosophic Sets) focuses on two advanced Neutrosophic frameworks: MultiNeutrosophic Sets, and Refined Neutrosophic Sets. Using Hyperneutrosophic and nn-SuperHyperneutrosophic Sets, these extensions are analyzed in detail, highlighting their adaptability to multidimensional and complex scenarios. Examples and mathematical properties are provided to showcase their practical relevance and theoretical depth. The ninth chapter (Advanced Hyperneutrosophic Set Types – Type-m, Nonstationary, Subset-Valued, and Complex Refined) explores extensions of the Neutrosophic framework, focusing on: Type-m Neutrosophic Sets, Nonstationary Neutrosophic Sets, Subset-Valued Neutrosophic Sets, and Complex Refined Neutrosophic Sets. These extensions utilize the Hyperneutrosophic and SuperHyperneutrosophic frameworks to address advanced challenges in uncertainty management, expanding their mathematical scope and practical applications. The tenth chapter (Hyperfuzzy Hypersoft Sets and Hyperneutrosophic Hypersoft Sets) integrates the principles of Fuzzy, Neutrosophic, and Soft Sets with hyperstructures to introduce: Hyperfuzzy Hypersoft Sets, and Hyperneutrosophic Hypersoft Sets. These frameworks are designed to manage complex uncertainty through hierarchical structures based on power sets, with detailed analysis of their properties and theoretical potential. The eleventh chapter (A Review of SuperFuzzy, SuperNeutrosophic, and SuperPlithogenic Sets) revisits and extends the study of advanced set concepts such as: SuperFuzzy Sets, Super-Intuitionistic Fuzzy Sets,Super-Neutrosophic Sets, and SuperPlithogenic Sets, including their specialized variants like quadripartitioned, pentapartitioned, and heptapartitioned forms. The work serves as a consolidation of existing studies while highlighting potential directions for future research in hierarchical uncertainty modeling. Focusing on decision-making under uncertainty, the tweve chapter (Advanced SuperHypersoft and TreeSoft Sets) introduces six novel concepts: SuperHypersoft Rough Sets,SuperHypersoft Expert Sets, Bipolar SuperHypersoft Sets, TreeSoft Rough Sets, TreeSoft Expert Sets, and Bipolar TreeSoft Sets. Definitions, properties, and potential applications of these frameworks are explored to enhance the flexibility of soft set-based models. The final chapter (Hierarchical Uncertainty in Fuzzy, Neutrosophic, and Plithogenic Sets) provides a comprehensive survey of hierarchical uncertainty frameworks, with a focus on Plithogenic Sets and their advanced extensions: Hyperplithogenic Sets, SuperHyperplithogenic Sets. It examines relationships with other major concepts such as Intuitionistic Fuzzy Sets, Vague Sets, Picture Fuzzy Sets, Hesitant Fuzzy Sets, and multi-partitioned Neutrosophic Sets, consolidating their theoretical interconnections for modeling complex systems. This volume not only reflects the dynamic interplay between theoretical rigor and practical application but also serves as a beacon for future research in uncertainty modeling, offering advanced tools to tackle the intricacies of modern challenges.
Analytical Decision Making And Data Envelopment Analysis
DOWNLOAD
Author : S.A Edalatpanah
language : en
Publisher: Springer Nature
Release Date : 2024-10-28
Analytical Decision Making And Data Envelopment Analysis written by S.A Edalatpanah and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-28 with Business & Economics categories.
This book explores the intersection of data envelopment analysis (DEA) and various analytical decision-making methodologies. Featuring contributions from experts in the field from across the world, each chapter delves into different aspects of DEA and its applications in real-world scenarios. The book covers a wide range of topics, including integrating DEA with machine learning techniques, performance evaluation in diverse sectors like banking and civil engineering, and using DEA in managerial decision-making. It also examines data mining during the Covid-19 pandemic and the application of blockchain and IoT in supply chain management. The book offers a deep dive into the evolution of nonparametric frontier methods and the development of new optimization algorithms, addressing the complexities of modern analytical decision-making tools. A few chapters delve into futuristic topics like fuzzy sets and their extensions in decision-making and exploring e-learning platforms for education. This book is an invaluable resource for researchers, practitioners and students interested in the latest DEA advancements and practical applications in various fields. Its multidisciplinary approach makes it a useful addition to the libraries of those seeking to understand the complexities and potentials of modern analytical decision-making tools.
Some Types Of Hyperneutrosophic Set 4 Cubic Trapozoidal Q Rung Orthopair Overset Underset And Offset
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date :
Some Types Of Hyperneutrosophic Set 4 Cubic Trapozoidal Q Rung Orthopair Overset Underset And Offset written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
This paper builds upon the foundational work presented in [38–40]. The Neutrosophic Set provides a comprehensive mathematical framework for managing uncertainty, defined by three membership functions: truth, indeterminacy, and falsity. Recent advancements have introduced extensions such as the Hyperneutrosophic Set and the SuperHyperneutrosophic Set, which are specifically designed to address increasingly complex and multidimensional problems. The formal definitions of these sets are available in [30]. In this paper, we extend the Neutrosophic Cubic Set, Trapezoidal Neutrosophic Set, q-Rung Orthopair Neutrosophic Set, Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset using the frameworks of the Hyperneutrosophic Set and the SuperHyperneutrosophic Set. Furthermore, we briefly examine their properties and potential applications.
Handbook Of Research On The Applications Of Neutrosophic Sets Theory And Their Extensions In Education
DOWNLOAD
Author : Broumi, Said
language : en
Publisher: IGI Global
Release Date : 2023-06-09
Handbook Of Research On The Applications Of Neutrosophic Sets Theory And Their Extensions In Education written by Broumi, Said and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-09 with Mathematics categories.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.