Introduction To Algorithms For Data Mining And Machine Learning

DOWNLOAD
Download Introduction To Algorithms For Data Mining And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Algorithms For Data Mining And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning And Data Mining
DOWNLOAD
Author : Igor Kononenko
language : en
Publisher: Elsevier
Release Date : 2007-04-30
Machine Learning And Data Mining written by Igor Kononenko and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-30 with Computers categories.
Data mining is often referred to by real-time users and software solutions providers as knowledge discovery in databases (KDD). Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. This book has been written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining.Suitable for advanced undergraduates and their tutors at postgraduate level in a wide area of computer science and technology topics as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to the libraries and bookshelves of the many companies who are using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions. - Provides an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining - A valuable addition to the libraries and bookshelves of companies using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions
Data Mining And Analysis
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-12
Data Mining And Analysis written by Mohammed J. Zaki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Computers categories.
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19
Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Data Mining And Machine Learning Applications
DOWNLOAD
Author : Rohit Raja
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-02
Data Mining And Machine Learning Applications written by Rohit Raja and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-02 with Computers categories.
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
Pattern Recognition Algorithms For Data Mining
DOWNLOAD
Author : Sankar K. Pal
language : en
Publisher: CRC Press
Release Date : 2004-05-27
Pattern Recognition Algorithms For Data Mining written by Sankar K. Pal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-27 with Computers categories.
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Introduction To Algorithms For Data Mining And Machine Learning
DOWNLOAD
Author : Xin-She Yang
language : en
Publisher: Academic Press
Release Date : 2019-06-17
Introduction To Algorithms For Data Mining And Machine Learning written by Xin-She Yang and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-17 with Mathematics categories.
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
The Top Ten Algorithms In Data Mining
DOWNLOAD
Author : Xindong Wu
language : en
Publisher: CRC Press
Release Date : 2009-04-09
The Top Ten Algorithms In Data Mining written by Xindong Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-09 with Business & Economics categories.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Data Mining
DOWNLOAD
Author : Ian H. Witten
language : en
Publisher: Elsevier
Release Date : 2011-02-03
Data Mining written by Ian H. Witten and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-03 with Computers categories.
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Data Mining And Knowledge Discovery With Evolutionary Algorithms
DOWNLOAD
Author : Alex A. Freitas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Data Mining And Knowledge Discovery With Evolutionary Algorithms written by Alex A. Freitas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Computers categories.
This book addresses the integration of two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increas ingly popular in the last few years, and their integration is currently an area of active research. In essence, data mining consists of extracting valid, comprehensible, and in teresting knowledge from data. Data mining is actually an interdisciplinary field, since there are many kinds of methods that can be used to extract knowledge from data. Arguably, data mining mainly uses methods from machine learning (a branch of artificial intelligence) and statistics (including statistical pattern recog nition). Our discussion of data mining and evolutionary algorithms is primarily based on machine learning concepts and principles. In particular, in this book we emphasize the importance of discovering comprehensible, interesting knowledge, which the user can potentially use to make intelligent decisions. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowl edge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.
Metalearning
DOWNLOAD
Author : Pavel Brazdil
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-11-26
Metalearning written by Pavel Brazdil and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-26 with Computers categories.
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.