Introduction To Arithmetic Groups

DOWNLOAD
Download Introduction To Arithmetic Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Arithmetic Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Arithmetic Groups
DOWNLOAD
Author : Dave Witte Morris
language : en
Publisher:
Release Date : 2015
Introduction To Arithmetic Groups written by Dave Witte Morris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Arithmetic groups categories.
This book provides a gentle introduction to the study of arithmetic subgroups of semisimple Lie groups. This means that the goal is to understand the group SL(n, Z) and certain of its subgroups. Among the major results discussed in the later chapters are the Mostow Rigidity Theorem, the Margulis Superrigidity Theorem, Ratner's Theorems, and the classification of arithmetic subgroups of classical groups. As background for the proofs of these theorems, the book provides primers on lattice subgroups, arithmetic groups, real rank and Q-rank, ergodic theory, unitary representations, amenability, Kazhdan's property (T), and quasi-isometries. Numerous exercises enhance the book's usefulness both as a textbook for a second-year graduate course and for self-study. In addition, notes at the end of each chapter have suggestions for further reading. (Proofs in this book often consider only an illuminating special case.) Readers are expected to have some acquaintance with Lie groups, but appendices briefly review the prerequisite background. A PDF file of the book is available on the internet. This inexpensive printed edition is for readers who prefer a hardcopy
Introduction To Arithmetic Groups
DOWNLOAD
Author : Armand Borel
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-11-07
Introduction To Arithmetic Groups written by Armand Borel and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Education categories.
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
Arithmetic Groups
DOWNLOAD
Author : James E. Humphreys
language : en
Publisher:
Release Date : 1980
Arithmetic Groups written by James E. Humphreys and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980 with Arithmetic groups categories.
Twin Buildings And Applications To S Arithmetic Groups
DOWNLOAD
Author : Peter Abramenko
language : en
Publisher: Springer
Release Date : 2006-11-14
Twin Buildings And Applications To S Arithmetic Groups written by Peter Abramenko and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
This book is addressed to mathematicians and advanced students interested in buildings, groups and their interplay. Its first part introduces - presupposing good knowledge of ordinary buildings - the theory of twin buildings, discusses its group-theoretic background (twin BN-pairs), investigates geometric aspects of twin buildings and applies them to determine finiteness properties of certain S-arithmetic groups. This application depends on topological properties of some subcomplexes of spherical buildings. The background of this problem, some examples and the complete solution for all "sufficiently large" classical buildings are covered in detail in the second part of the book.
Knots And Primes
DOWNLOAD
Author : Masanori Morishita
language : en
Publisher: Springer Nature
Release Date : 2024-05-27
Knots And Primes written by Masanori Morishita and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-27 with Mathematics categories.
This book provides a foundation for arithmetic topology, a new branch of mathematics that investigates the analogies between the topology of knots, 3-manifolds, and the arithmetic of number fields. Arithmetic topology is now becoming a powerful guiding principle and driving force to obtain parallel results and new insights between 3-dimensional geometry and number theory. After an informative introduction to Gauss' work, in which arithmetic topology originated, the text reviews a background from both topology and number theory. The analogy between knots in 3-manifolds and primes in number rings, the founding principle of the subject, is based on the étale topological interpretation of primes and number rings. On the basis of this principle, the text explores systematically intimate analogies and parallel results of various concepts and theories between 3-dimensional topology and number theory. The presentation of these analogies begins at an elementary level, gradually building to advanced theories in later chapters. Many results presented here are new and original. References are clearly provided if necessary, and many examples and illustrations are included. Some useful problems are also given for future research. All these components make the book useful for graduate students and researchers in number theory, low dimensional topology, and geometry. This second edition is a corrected and enlarged version of the original one. Misprints and mistakes in the first edition are corrected, references are updated, and some expositions are improved. Because of the remarkable developments in arithmetic topology after the publication of the first edition, the present edition includes two new chapters. One is concerned with idelic class field theory for 3-manifolds and number fields. The other deals with topological and arithmetic Dijkgraaf–Witten theory, which supports a new bridge between arithmetic topology and mathematical physics.
Representation Theory Of Finite Groups Algebra And Arithmetic
DOWNLOAD
Author : Steven H. Weintraub
language : en
Publisher: American Mathematical Soc.
Release Date : 2003
Representation Theory Of Finite Groups Algebra And Arithmetic written by Steven H. Weintraub and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.
An Introduction To Algebraic Geometry And Algebraic Groups
DOWNLOAD
Author : Meinolf Geck
language : en
Publisher: Oxford University Press
Release Date : 2013-03-14
An Introduction To Algebraic Geometry And Algebraic Groups written by Meinolf Geck and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.
A Course In Arithmetic
DOWNLOAD
Author : J-P. Serre
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
A Course In Arithmetic written by J-P. Serre and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students atthe Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Introduction To The Arithmetic Theory Of Automorphic Functions
DOWNLOAD
Author : Gorō Shimura
language : en
Publisher: Princeton University Press
Release Date : 1971-08-21
Introduction To The Arithmetic Theory Of Automorphic Functions written by Gorō Shimura and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-08-21 with Mathematics categories.
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Cohomology Of Arithmetic Groups
DOWNLOAD
Author : James W. Cogdell
language : en
Publisher: Springer
Release Date : 2018-08-18
Cohomology Of Arithmetic Groups written by James W. Cogdell and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-18 with Mathematics categories.
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.