[PDF] Introduction To Data Science In Biostatistics - eBooks Review

Introduction To Data Science In Biostatistics


Introduction To Data Science In Biostatistics
DOWNLOAD

Download Introduction To Data Science In Biostatistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Data Science In Biostatistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Rafael A. Irizarry
language : en
Publisher: CRC Press
Release Date : 2019-11-12

Introduction To Data Science written by Rafael A. Irizarry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.


Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.



Introduction To Data Science In Biostatistics


Introduction To Data Science In Biostatistics
DOWNLOAD
Author : Thomas W. MacFarland
language : en
Publisher: Springer Nature
Release Date : 2024-05-10

Introduction To Data Science In Biostatistics written by Thomas W. MacFarland and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-10 with Medical categories.


Introduction to Data Science in Biostatistics: Using R, the Tidyverse Ecosystem, and APIs defines and explores the term "data science" and discusses the many professional skills and competencies affiliated with the industry. With data science being a leading indicator of interest in STEM fields, the text also investigates this ongoing growth of demand in these spaces, with the goal of providing readers who are entering the professional world with foundational knowledge of required skills, job trends, and salary expectations. The text provides a historical overview of computing and the field's progression to R as it exists today, including the multitude of packages and functions associated with both Base R and the tidyverse ecosystem. Readers will learn how to use R to work with real data, as well as how to communicate results to external stakeholders. A distinguishing feature of this text is its emphasis on the emerging use of APIs to obtain data.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Introduction To Data Analysis And Graphical Presentation In Biostatistics With R


Introduction To Data Analysis And Graphical Presentation In Biostatistics With R
DOWNLOAD
Author : Thomas W. MacFarland
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-19

Introduction To Data Analysis And Graphical Presentation In Biostatistics With R written by Thomas W. MacFarland and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-19 with Medical categories.


Through real-world datasets, this book shows the reader how to work with material in biostatistics using the open source software R. These include tools that are critical to dealing with missing data, which is a pressing scientific issue for those engaged in biostatistics. Readers will be equipped to run analyses and make graphical presentations based on the sample dataset and their own data. The hands-on approach will benefit students and ensure the accessibility of this book for readers with a basic understanding of R. Topics include: an introduction to Biostatistics and R, data exploration, descriptive statistics and measures of central tendency, t-Test for independent samples, t-Test for matched pairs, ANOVA, correlation and linear regression, and advice for future work.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Laura Igual
language : en
Publisher: Springer
Release Date : 2017-02-22

Introduction To Data Science written by Laura Igual and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-22 with Computers categories.


This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.



Introduction To Statistics And Data Analysis


Introduction To Statistics And Data Analysis
DOWNLOAD
Author : Christian Heumann
language : en
Publisher: Springer Nature
Release Date : 2023-01-30

Introduction To Statistics And Data Analysis written by Christian Heumann and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-30 with Mathematics categories.


Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.



Statistical Foundations Of Data Science


Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21

Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.


Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.



Statistics For Health Data Science


Statistics For Health Data Science
DOWNLOAD
Author : Ruth Etzioni
language : en
Publisher: Springer Nature
Release Date : 2021-01-04

Statistics For Health Data Science written by Ruth Etzioni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Medical categories.


Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students’ anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep (“organic”) understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/



Introduction To Biomedical Data Science


Introduction To Biomedical Data Science
DOWNLOAD
Author : Robert Hoyt
language : en
Publisher: Lulu.com
Release Date : 2019-11-24

Introduction To Biomedical Data Science written by Robert Hoyt and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-24 with Science categories.


Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.