Introduction To Explainable Ai Xai

DOWNLOAD
Download Introduction To Explainable Ai Xai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Explainable Ai Xai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Explainable Ai Xai
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-27
Introduction To Explainable Ai Xai written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-27 with Computers categories.
"Introduction to Explainable AI (XAI): Making AI Understandable" is an essential resource for anyone seeking to understand the burgeoning field of explainable artificial intelligence. As AI systems become integral to critical decision-making processes across industries, the ability to interpret and comprehend their outputs becomes increasingly vital. This book offers a comprehensive exploration of XAI, delving into its foundational concepts, diverse techniques, and pivotal applications. It strives to demystify complex AI behaviors, ensuring that stakeholders across sectors can engage with AI technologies confidently and responsibly. Structured to cater to both beginners and those with an existing interest in AI, this book covers the spectrum of XAI topics, from model-specific approaches and interpretable machine learning to the ethical and societal implications of AI transparency. Readers will be equipped with practical insights into the tools and frameworks available for developing explainable models, alongside an understanding of the challenges and limitations inherent in the field. As we look toward the future, the book also addresses emerging trends and research directions, positioning itself as a definitive guide to navigating the evolving landscape of XAI. This book stands as an invaluable reference for students, practitioners, and policy makers alike, offering a balanced blend of theory and practical guidance. By focusing on the synergy between humans and machines through explainability, it underscores the importance of building AI systems that are not only powerful but also trustworthy and aligned with societal values.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Hands On Explainable Ai Xai With Python
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-31
Hands On Explainable Ai Xai With Python written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Computers categories.
Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications
Deep Learning In Gaming And Animations
DOWNLOAD
Author : Vikas Chaudhary
language : en
Publisher: CRC Press
Release Date : 2021-12-07
Deep Learning In Gaming And Animations written by Vikas Chaudhary and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.
Over the last decade, progress in deep learning has had a profound and transformational effect on many complex problems, including speech recognition, machine translation, natural language understanding, and computer vision. As a result, computers can now achieve human-competitive performance in a wide range of perception and recognition tasks. Many of these systems are now available to the programmer via a range of so-called cognitive services. More recently, deep reinforcement learning has achieved ground-breaking success in several complex challenges. This book makes an enormous contribution to this beautiful, vibrant area of study: an area that is developing rapidly both in breadth and depth. Deep learning can cope with a broader range of tasks (and perform those tasks to increasing levels of excellence). This book lays a good foundation for the core concepts and principles of deep learning in gaming and animation, walking you through the fundamental ideas with expert ease. This book progresses in a step-by-step manner. It reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Also, some chapters introduce and cover novel ideas about how artificial intelligence (AI), deep learning, and machine learning have changed the world in gaming and animation. It gives us the idea that AI can also be applied in gaming, and there are limited textbooks in this area. This book comprehensively addresses all the aspects of AI and deep learning in gaming. Also, each chapter follows a similar structure so that students, teachers, and industry experts can orientate themselves within the text. There are few books in the field of gaming using AI. Deep Learning in Gaming and Animations teaches you how to apply the power of deep learning to build complex reasoning tasks. After being exposed to the foundations of machine and deep learning, you will use Python to build a bot and then teach it the game's rules. This book also focuses on how different technologies have revolutionized gaming and animation with various illustrations.
Explainable Ai With Python
DOWNLOAD
Author : Leonida Gianfagna
language : en
Publisher: Springer Nature
Release Date : 2021-04-28
Explainable Ai With Python written by Leonida Gianfagna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-28 with Computers categories.
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Practical Explainable Ai Using Python
DOWNLOAD
Author : Pradeepta Mishra
language : en
Publisher: Apress
Release Date : 2021-12-15
Practical Explainable Ai Using Python written by Pradeepta Mishra and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-15 with Computers categories.
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers. You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data, classification problems, and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks. What You'll Learn Review the different ways of making an AI model interpretable and explainable Examine the biasness and good ethical practices of AI models Quantify, visualize, and estimate reliability of AI models Design frameworks to unbox the black-box models Assess the fairness of AI models Understand the building blocks of trust in AI models Increase the level of AI adoption Who This Book Is For AI engineers, data scientists, and software developers involved in driving AI projects/ AI products.
Deep Learning For Nlp And Speech Recognition
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2019-06-10
Deep Learning For Nlp And Speech Recognition written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-10 with Computers categories.
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Mastering Java Machine Learning
DOWNLOAD
Author : Dr. Uday Kamath
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-11
Mastering Java Machine Learning written by Dr. Uday Kamath and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-11 with Computers categories.
Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects More than 15 open source Java tools in a wide range of techniques, with code and practical usage. More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis. Who This Book Is For This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning. What You Will Learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. In Detail Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain. Style and approach A practical guide to help you explore machine learning—and an array of Java-based tools and frameworks—with the help of practical examples and real-world use cases.
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges
DOWNLOAD
Author : Ilaria Tiddi
language : en
Publisher:
Release Date : 2020
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges written by Ilaria Tiddi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Artificial intelligence categories.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2021-12-16
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-16 with Computers categories.
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group