Introduction To Generative Ai

DOWNLOAD
Download Introduction To Generative Ai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Generative Ai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Generative Ai
DOWNLOAD
Author : Numa Dhamani
language : en
Publisher: Simon and Schuster
Release Date : 2024-03-05
Introduction To Generative Ai written by Numa Dhamani and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-05 with Computers categories.
Generative AI tools like ChatGPT are amazing—but how will their use impact our society? This book introduces the world-transforming technology and the strategies you need to use generative AI safely and effectively. Introduction to Generative AI gives you the hows-and-whys of generative AI in accessible language. In this easy-to-read introduction, you’ll learn: How large language models (LLMs) work How to integrate generative AI into your personal and professional workflows Balancing innovation and responsibility The social, legal, and policy landscape around generative AI Societal impacts of generative AI Where AI is going Anyone who uses ChatGPT for even a few minutes can tell that it’s truly different from other chatbots or question-and-answer tools. Introduction to Generative AI guides you from that first eye-opening interaction to how these powerful tools can transform your personal and professional life. In it, you’ll get no-nonsense guidance on generative AI fundamentals to help you understand what these models are (and aren’t) capable of, and how you can use them to your greatest advantage. Foreword by Sahar Massachi. About the technology Generative AI tools like ChatGPT, Bing, and Bard have permanently transformed the way we work, learn, and communicate. This delightful book shows you exactly how Generative AI works in plain, jargon-free English, along with the insights you’ll need to use it safely and effectively. About the book Introduction to Generative AI guides you through benefits, risks, and limitations of Generative AI technology. You’ll discover how AI models learn and think, explore best practices for creating text and graphics, and consider the impact of AI on society, the economy, and the law. Along the way, you’ll practice strategies for getting accurate responses and even understand how to handle misuse and security threats. What's inside How large language models work Integrate Generative AI into your daily work Balance innovation and responsibility About the reader For anyone interested in Generative AI. No technical experience required. About the author Numa Dhamani is a natural language processing expert working at the intersection of technology and society. Maggie Engler is an engineer and researcher currently working on safety for large language models. The technical editor on this book was Maris Sekar. Table of Contents 1 Large language models: The power of AI Evolution of natural language processing 2 Training large language models 3 Data privacy and safety with LLMs 4 The evolution of created content 5 Misuse and adversarial attacks 6 Accelerating productivity: Machine-augmented work 7 Making social connections with chatbots 8 What’s next for AI and LLMs 9 Broadening the horizon: Exploratory topics in AI
Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27
Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Generative Ai An Overview
DOWNLOAD
Author :
language : en
Publisher: Editor IJSMI
Release Date : 2025-06-19
Generative Ai An Overview written by and has been published by Editor IJSMI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-19 with Computers categories.
Generative Artificial Intelligence, an Artificial Intelligence concept which is used to create own data which includes creating text, audio, video, images, programming codes and also advanced data structures such as protein structures. Before the Generative AI, Artificial Intelligence models used Machine learning models to predict pattern and structures. Generative AI models are widely being used in Business, healthcare, education and media sectors. Generative AI helps organizations to be more innovative, cost effective and efficient in their operations. Machine learning, Deep Learning, Large Language Models, transformers forms the basis for creating own data in Generative AI environment. Generative AI or Gen AI uses large data set to frame set of rules which is used in creating of new content. ChatGPT and Microsoft Copilot are one of the examples of the Generative AI tools which helps user to create texts and develop answers to users questions. Both proprietary as well as open source Generative aI models are available now. Large Language Models or foundation models which are training large datasets forms the basis of creating contents in Generative AI. These models do not need to be trained and their trained on their own and this is the major difference between supervised Machine learning models which require labeling for classifying the data. Generative AI model building starts with the data collection and processing of large datasets, then moving to model building, training and pattern learning from those large datasets and then finally rendering and validating different created the different types of contents such as text, audio, video and images. The book also provides overview of Python programming for the readers who are first time learners of Python programming. The contents are adopted from Author’s book on Python programming for Data Scientists
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-28
Generative Deep Learning written by David Foster and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Computers categories.
Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Designing Autonomous Ai
DOWNLOAD
Author : Kence Anderson
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-06-14
Designing Autonomous Ai written by Kence Anderson and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-14 with Computers categories.
Early rules-based artificial intelligence demonstrated intriguing decision-making capabilities but lacked perception and didn't learn. AI today, primed with machine learning perception and deep reinforcement learning capabilities, can perform superhuman decision-making for specific tasks. This book shows you how to combine the practicality of early AI with deep learning capabilities and industrial control technologies to make robust decisions in the real world. Using concrete examples, minimal theory, and a proven architectural framework, author Kence Anderson demonstrates how to teach autonomous AI explicit skills and strategies. You'll learn when and how to use and combine various AI architecture design patterns, as well as how to design advanced AI without needing to manipulate neural networks or machine learning algorithms. Students, process operators, data scientists, machine learning algorithm experts, and engineers who own and manage industrial processes can use the methodology in this book to design autonomous AI. This book examines: Differences between and limitations of automated, autonomous, and human decision-making Unique advantages of autonomous AI for real-time decision-making, with use cases How to design an autonomous AI from modular components and document your designs
Generative Ai With Python And Tensorflow 2
DOWNLOAD
Author : Joseph Babcock
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-04-30
Generative Ai With Python And Tensorflow 2 written by Joseph Babcock and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-30 with Computers categories.
This edition is heavily outdated and we have a new edition with PyTorch examples published! Key Features Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along Look inside the most famous deep generative models, from GPT to MuseGAN Learn to build and adapt your own models in TensorFlow 2.x Explore exciting, cutting-edge use cases for deep generative AI Book DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.What you will learn Export the code from GitHub into Google Colab to see how everything works for yourself Compose music using LSTM models, simple GANs, and MuseGAN Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN Learn how attention and transformers have changed NLP Build several text generation pipelines based on LSTMs, BERT, and GPT-2 Implement paired and unpaired style transfer with networks like StyleGAN Discover emerging applications of generative AI like folding proteins and creating videos from images Who this book is for This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.
Hands On Artificial Intelligence For Beginners
DOWNLOAD
Author : Patrick D. Smith
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Hands On Artificial Intelligence For Beginners written by Patrick D. Smith and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.
Ai Crash Course
DOWNLOAD
Author : Hadelin de Ponteves
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-29
Ai Crash Course written by Hadelin de Ponteves and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.
Unlock the power of artificial intelligence with top Udemy AI instructor Hadelin de Ponteves. Key FeaturesLearn from friendly, plain English explanations and practical activitiesPut ideas into action with 5 hands-on projects that show step-by-step how to build intelligent softwareUse AI to win classic video games and construct a virtual self-driving carBook Description Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learnMaster the basics of AI without any previous experienceBuild fun projects, including a virtual-self-driving car and a robot warehouse workerUse AI to solve real-world business problemsLearn how to code in PythonDiscover the 5 principles of reinforcement learningCreate your own AI toolkitWho this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).
Pragmatic Ai
DOWNLOAD
Author : Noah Gift
language : en
Publisher: Addison-Wesley Professional
Release Date : 2018-07-12
Pragmatic Ai written by Noah Gift and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-12 with Computers categories.
Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.