Introduction To Geometric Control

DOWNLOAD
Download Introduction To Geometric Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Geometric Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Geometric Control
DOWNLOAD
Author : Yuri Sachkov
language : en
Publisher: Springer Nature
Release Date : 2022-07-02
Introduction To Geometric Control written by Yuri Sachkov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-02 with Technology & Engineering categories.
This text is an enhanced, English version of the Russian edition, published in early 2021 and is appropriate for an introductory course in geometric control theory. The concise presentation provides an accessible treatment of the subject for advanced undergraduate and graduate students in theoretical and applied mathematics, as well as to experts in classic control theory for whom geometric methods may be introduced. Theory is accompanied by characteristic examples such as stopping a train, motion of mobile robot, Euler elasticae, Dido's problem, and rolling of the sphere on the plane. Quick foundations to some recent topics of interest like control on Lie groups and sub-Riemannian geometry are included. Prerequisites include only a basic knowledge of calculus, linear algebra, and ODEs; preliminary knowledge of control theory is not assumed. The applications problems-oriented approach discusses core subjects and encourages the reader to solve related challenges independently. Highly-motivated readers can acquire working knowledge of geometric control techniques and progress to studying control problems and more comprehensive books on their own. Selected sections provide exercises to assist in deeper understanding of the material. Controllability and optimal control problems are considered for nonlinear nonholonomic systems on smooth manifolds, in particular, on Lie groups. For the controllability problem, the following questions are considered: controllability of linear systems, local controllability of nonlinear systems, Nagano–Sussmann Orbit theorem, Rashevskii–Chow theorem, Krener's theorem. For the optimal control problem, Filippov's theorem is stated, invariant formulation of Pontryagin maximum principle on manifolds is given, second-order optimality conditions are discussed, and the sub-Riemannian problem is studied in detail. Pontryagin maximum principle is proved for sub-Riemannian problems, solution to the sub-Riemannian problems on the Heisenberggroup, the group of motions of the plane, and the Engel group is described.
Introduction To Geometric Control
DOWNLOAD
Author : Yuri Sachkov
language : en
Publisher: Springer
Release Date : 2022-06-28
Introduction To Geometric Control written by Yuri Sachkov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-28 with Technology & Engineering categories.
This text is an enhanced, English version of the Russian edition, published in early 2021 and is appropriate for an introductory course in geometric control theory. The concise presentation provides an accessible treatment of the subject for advanced undergraduate and graduate students in theoretical and applied mathematics, as well as to experts in classic control theory for whom geometric methods may be introduced. Theory is accompanied by characteristic examples such as stopping a train, motion of mobile robot, Euler elasticae, Dido's problem, and rolling of the sphere on the plane. Quick foundations to some recent topics of interest like control on Lie groups and sub-Riemannian geometry are included. Prerequisites include only a basic knowledge of calculus, linear algebra, and ODEs; preliminary knowledge of control theory is not assumed. The applications problems-oriented approach discusses core subjects and encourages the reader to solve related challenges independently. Highly-motivated readers can acquire working knowledge of geometric control techniques and progress to studying control problems and more comprehensive books on their own. Selected sections provide exercises to assist in deeper understanding of the material. Controllability and optimal control problems are considered for nonlinear nonholonomic systems on smooth manifolds, in particular, on Lie groups. For the controllability problem, the following questions are considered: controllability of linear systems, local controllability of nonlinear systems, Nagano–Sussmann Orbit theorem, Rashevskii–Chow theorem, Krener's theorem. For the optimal control problem, Filippov's theorem is stated, invariant formulation of Pontryagin maximum principle on manifolds is given, second-order optimality conditions are discussed, and the sub-Riemannian problem is studied in detail. Pontryagin maximum principle is proved for sub-Riemannian problems, solution to the sub-Riemannian problems on the Heisenberg group, the group of motions of the plane, and the Engel group is described.
Geometric Control Theory
DOWNLOAD
Author : Velimir Jurdjevic
language : en
Publisher: Cambridge University Press
Release Date : 1997
Geometric Control Theory written by Velimir Jurdjevic and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
Geometric Control Theory And Sub Riemannian Geometry
DOWNLOAD
Author : Gianna Stefani
language : en
Publisher: Springer
Release Date : 2014-06-05
Geometric Control Theory And Sub Riemannian Geometry written by Gianna Stefani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-05 with Mathematics categories.
Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.
Geometric Control Of Mechanical Systems
DOWNLOAD
Author : Francesco Bullo
language : en
Publisher: Springer
Release Date : 2019-06-12
Geometric Control Of Mechanical Systems written by Francesco Bullo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-12 with Science categories.
The primary emphasis of this book is the modeling, analysis, and control of mechanical systems. The methods and results presented can be applied to a large class of mechanical control systems, including applications in robotics, autonomous vehicle control, and multi-body systems. The book is unique in that it presents a unified, rather than an inclusive, treatment of control theory for mechanical systems. A distinctive feature of the presentation is its reliance on techniques from differential and Riemannian geometry. The book contains extensive examples and exercises, and will be suitable for a growing number of courses in this area. It begins with the detailed mathematical background, proceeding through innovative approaches to physical modeling, analysis, and design techniques. Numerous examples illustrate the proposed methods and results, while the many exercises test basic knowledge and introduce topics not covered in the main body of the text. The audience of this book consists of two groups. The first group is comprised of graduate students in engineering or mathematical sciences who wish to learn the basics of geometric mechanics, nonlinear control theory, and control theory for mechanical systems. Readers will be able to immediately begin exploring the research literature on these subjects. The second group consists of researchers in mechanics and control theory. Nonlinear control theoreticians will find explicit links between concepts in geometric mechanics and nonlinear control theory. Researchers in mechanics will find an overview of topics in control theory that have relevance to mechanics.
Geometric Control And Numerical Aspects Of Nonholonomic Systems
DOWNLOAD
Author : Jorge Cortés Monforte
language : en
Publisher: Springer
Release Date : 2004-10-19
Geometric Control And Numerical Aspects Of Nonholonomic Systems written by Jorge Cortés Monforte and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-10-19 with Mathematics categories.
Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.
Geometric Control And Non Holonomic Mechanics
DOWNLOAD
Author : Velimir Jurdjevic
language : en
Publisher: American Mathematical Soc.
Release Date : 1998
Geometric Control And Non Holonomic Mechanics written by Velimir Jurdjevic and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
Nine papers from the June 1996 conference focus on research directions having origins in mechanics and differential geometry, but driven by modern control theory. Among the topics: lie determined systems and optimal problems with symmetries; Dubins' problem in the hyperbolic plane using the open disc model; and geometry and structure in the control of linear time invariant systems. Annotation copyrighted by Book News, Inc., Portland, OR
Contemporary Trends In Nonlinear Geometric Control Theory And Its Applications
DOWNLOAD
Author : Alfonso Anzaldo-meneses
language : en
Publisher: World Scientific
Release Date : 2002-01-30
Contemporary Trends In Nonlinear Geometric Control Theory And Its Applications written by Alfonso Anzaldo-meneses and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-30 with Mathematics categories.
Mathematical control theory has evolved from the study of practical problems in engineering and sciences to the elaboration of deep, important concepts in mathematics and applied sciences. This volume concerns contemporary trends in nonlinear geometric control theory and its applications. It is a fine collection of papers presenting new results, relevant open problems, and important applications regarding academic and real-world problems.The book is dedicated to Velimir Jurdjevic whose scientific activity has been influential in the research of many of the authors. It contains a number of articles specially written by colleagues and friends of Vel Jurdjevic, all of them leading applied mathematicians and control theorists. There is also place for surveys on topics of current research which present the state of the art of modern geometric control theory. Finally, the volume contains several new mathematical ideas generated by geometric control theory techniques, which may initiate new directions of research beyond control theory.
Nonholonomic Mechanics And Control
DOWNLOAD
Author : A.M. Bloch
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-03
Nonholonomic Mechanics And Control written by A.M. Bloch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-03 with Mathematics categories.
Our goal in this book is to explore some of the connections between control theory and geometric mechanics; that is, we link control theory with a g- metric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems s- ject to motion constraints. This synthesis of topics is appropriate, since there is a particularly rich connection between mechanics and nonlinear control theory. While an introduction to many important aspects of the mechanics of nonholonomically constrained systems may be found in such sources as the monograph of Neimark and Fufaev [1972], the geometric view as well as the control theory of such systems remains largely sc- tered through various research journals. Our aim is to provide a uni?ed treatment of nonlinear control theory and constrained mechanical systems that will incorporate material that has not yet made its way into texts and monographs. Mechanicshastraditionallydescribedthebehavioroffreeandinteracting particles and bodies, the interaction being described by potential forces. It encompasses the Lagrangian and Hamiltonian pictures and in its modern form relies heavily on the tools of di?erential geometry (see, for example, Abraham and Marsden [1978]and Arnold [1989]). From our own point of view,ourpapersBloch,Krishnaprasad,Marsden,andMurray[1996],Bloch and Crouch [1995], and Baillieul [1998] have been particularly in?uential in the formulations presented in this book. Control Theory and Nonholonomic Systems. Control theory is the theory of prescribing motion for dynamical systems rather than describing vi Preface their observed behavior.
Introduction To Quantum Control And Dynamics
DOWNLOAD
Author : Domenico D’Alessandro
language : en
Publisher: CRC Press
Release Date : 2021-07-28
Introduction To Quantum Control And Dynamics written by Domenico D’Alessandro and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Science categories.
The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.